Science Rendue Possible
Cross, A. T., T. A. Krueger, P. M. Gonella, A. S. Robinson, and A. S. Fleischmann. 2020. Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation 24: e01272. https://doi.org/10.1016/j.gecco.2020.e01272
Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…
Brightly, W. H., S. E. Hartley, C. P. Osborne, K. J. Simpson, and C. A. E. Strömberg. 2020. High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology 26: 7128–7143. https://doi.org/10.1111/gcb.15343
The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…
Lindelof, K., J. A. Lindo, W. Zhou, X. Ji, and Q. (Jenny) Xiang. 2020. Phylogenomics, biogeography, and evolution of the blue‐ or white‐fruited dogwoods (Cornus)—Insights into morphological and ecological niche divergence following intercontinental geographic isolation. Journal of Systematics and Evolution 58: 604–645. https://doi.org/10.1111/jse.12676
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, esp…
Jahanshiri, E., N. M. Mohd Nizar, T. A. S. Tengku Mohd Suhairi, P. J. Gregory, A. S. Mohamed, E. M. Wimalasiri, and S. N. Azam-Ali. 2020. A Land Evaluation Framework for Agricultural Diversification. Sustainability 12: 3110. https://doi.org/10.3390/su12083110
Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…
Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339
The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …
Dyderski, M. K., D. Chmura, Ł. Dylewski, P. Horodecki, A. M. Jagodziński, M. Pietras, P. Robakowski, and B. Woziwoda. 2020. Biological Flora of the British Isles: Quercus rubra. Journal of Ecology 108: 1199–1225. https://doi.org/10.1111/1365-2745.13375
This account presents information on all aspects of the biology of Quercus rubra L. (Red Oak, Northern Red Oak; syn. Q. borealis, Q. maxima) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological …
Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980. https://doi.org/10.1111/jvs.12898
Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …
Kovalchuk, I., M. Pellino, P. Rigault, R. van Velzen, J. Ebersbach, J. R. Ashnest, M. Mau, et al. 2020. The Genomics ofCannabisand Its Close Relatives. Annual Review of Plant Biology 71: 713–739. https://doi.org/10.1146/annurev-arplant-081519-040203
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social int…
Berg, C. S., J. L. Brown, and J. J. Weber. 2019. An examination of climate‐driven flowering‐time shifts at large spatial scales over 153 years in a common weedy annual. American Journal of Botany 106: 1435–1443. https://doi.org/10.1002/ajb2.1381
Premise: Understanding species’ responses to climate change is a critical challenge facing biologists today. Though many species are widespread, few studies of climate‐driven shifts in flowering time have examined large continuous spatial scales for individual species. And even fewer studies have ex…
Karger, D. N., M. Kessler, O. Conrad, P. Weigelt, H. Kreft, C. König, and N. E. Zimmermann. 2019. Why tree lines are lower on islands—Climatic and biogeographic effects hold the answer J. Grytnes [ed.],. Global Ecology and Biogeography 28: 839–850. https://doi.org/10.1111/geb.12897
Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…