Science Rendue Possible
Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005
Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.
Ordoñez, J. C., C. Tovar, B. E. Walker, J. Wheeler, S. Ayala-Ruano, K. Aguirre-Carvajal, S. M. McMahon, and F. Cuesta. 2025. Phenological patterns of tropical mountain forest trees across the neotropics: evidence from herbarium specimens. Proceedings of the Royal Society B: Biological Sciences 292. https://doi.org/10.1098/rspb.2024.2748
The flowering phenology of many tropical mountain forest tree species remains poorly understood, including flowering synchrony and its drivers across neotropical ecosystems. We obtained herbarium records for 427 tree species from a long-term monitoring transect on the northwestern Ecuadorian Andes, sourced from the Global Biodiversity Information Facility and the Herbario Nacional del Ecuador. Using machine learning algorithms, we identified flowering phenophases from digitized specimen labels and applied circular statistics to build phenological calendars across six climatic regions within the neotropics. We found 47 939 herbarium records, of which 14 938 were classified as flowering by Random Forest Models. We constructed phenological calendars for six regions and 86 species with at least 20 flowering records. Phenological patterns varied considerably across regions, among species within regions, and within species across regions. There was limited interannual synchronicity in flowering patterns within regions primarily driven by bimodal species whose flowering peaks coincided with irradiance peaks. The predominantly high variability of phenological patterns among species and within species likely confers adaptative advantages by reducing interspecific competition during reproductive periods and promoting species coexistence in highly diverse regions with little or no seasonality.
Brock, J. M. R., A. M. Bellvé, and B. R. Burns. 2025. Marcescence and prostrate growth in tree ferns are adaptations to cold tolerance. Ecography. https://doi.org/10.1111/ecog.07362
Cold tolerance strategies in plants vary from structural to biochemical permitting many plants to survive and grow on sites that experience freezing conditions intermittently. Although tree ferns occur predominantly across the tropics, they also occur in temperate zones and occasionally in areas that experience sub‐zero temperatures, and how these large ferns survive freezing conditions is unknown. Many temperate tree fern taxa are marcescent – retaining whorls of dead fronds encircling the upper trunk – or develop short or prostrate trunks, possibly to insulate against frost damage to their trunks and growing crowns. We asked the following questions: 1) do global growth patterns and traits of tree ferns respond to freezing conditions associated with latitude and elevation, 2) do growth patterns of tree ferns in New Zealand vary along a temperature‐related gradient, and 3) do marcescent tree fern skirts insulate the growing crown from sub‐zero temperatures? To establish what morphological adaptations permitted the Cyatheales to occur in biomes that experience intermittent sub‐zero temperatures and frost, we 1) reviewed the global distributions of these structural and morphological traits within the tree ferns (Cyatheales); 2) assessed the patterns of tree fern marcescence, and other traits potentially associated with cold tolerance (no trunk, prostrate, short‐trunked) of nine taxa of the Cyatheales along environmental gradients across New Zealand; and 3) conducted a field experiment to assess the thermal insulation properties of tree fern marcescent skirts. We identified significant trends among growth forms, marcescence, and environmental gradients consistent with our hypothesis that these are adaptations to tolerate cold. Our field experiments provide quantitative evidence that marcescent skirts have a strong insulating effect on tree fern trunks. The Cyatheales have evolved several strategies to protect the pith cores of their trunks from extreme cold temperatures in temperate forests allowing them to capture niche space in environments beyond the tropics.
Bugado, R. E., N. Shrestha, R. A. Magri, J. Prado, and J. C. Lopes. 2025. Vanishing ecosystems: The looming threat of climate change on an iconic genus Vellozia in the Brazilian campos rupestres. Global Ecology and Conservation 58: e03439. https://doi.org/10.1016/j.gecco.2025.e03439
Climate change poses a significant threat to biodiversity and habitats worldwide, with mountainous regions and endemic species particularly vulnerable. One such ecosystem is the campos rupestres, a mountainous environment in the highlands of central-eastern Brazil, characterized by high species richness and endemism. Among this ecosystem's most diverse and abundant endemic genera is Vellozia (Velloziaceae), comprising 127 species. Using species distribution modeling, we assessed how climate change will likely affect suitable habitats for the genus. Additionally, we conducted IUCN extinction risk assessments and applied the EDGE2 method, incorporating a phylogenetic framework to identify species that should be prioritized for conservation. Our findings indicate that, on average, each species of Vellozia is expected to lose 84.26 % of its suitable habitat by 2060, with 13 species projected to lose 100 % of their habitat. Over half of the genus is projected to lose over 92 % of its suitable habitat. The species richness and endemism of Vellozia in the campos rupestres will diminish substantially in both geographic extent and species count. This decline is particularly concerning given that nearly half of the genus is microendemic, with 16 species occurring entirely outside protected areas. These findings highlight the potential for climate change to drastically reduce the habitat size and species richness of Vellozia and overall biodiversity within the campos rupestres ecosystem.
Wu, D., R. I. Milne, H. Yang, Y. Zhang, Y. Wang, S. Jia, J. Li, and K. Mao. 2025. Phylogenomics shed light on the complex evolutionary history of a gymnosperm genus showing East Asian–Tethyan disjunction. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13151
When and how disjunct distributions of biological taxa arose has long attracted interest in biogeography, yet the East Asian–Tethyan disjunction is understudied. Cupressus (Cupressaceae) shows this disjunction, with 10 species in East Asia and three in the Mediterranean region. Here we used target‐capture sequencing and obtained 1991 single‐copy nuclear genes, plus complete plastomes, to infer the evolutionary history of Cupressus. Our phylogenomic reconstruction resolved four well supported clades in Cupressus, but revealed significant phylogenetic conflicts, with inter‐lineage gene flow, incomplete lineage sorting and gene tree estimation error all making important contributions. The Chengiana clade most likely originated by hybridization between the ancestors of the Himalayan–Hengduan Mountains and subtropical Asia clades, whereas orogenic and climatic changes may have facilitated gene flow within the Himalayan–Hengduan Mountains clade. Molecular dating suggested that the most recent common ancestor of Cupressus appeared in East Asia around the middle Eocene period and then became continuously distributed across Eurasia. The East Asian–Tethyan disjunction arose when the Mediterranean and Himalayan–Hengduan Mountains clades diverged, likely to have been driven by Eocene/Oligocene declines in global temperature, then reinforced by the ecogeographic barrier created by the uplift of the Qinghai–Tibet Plateau. Niche shifts in the common ancestor of the Mediterranean clade, and signatures of selection in genes for drought and salt tolerance, probably indicate adaptation of this clade to local conditions. Overall, our study suggested that in‐depth phylogenomic analyses are powerful tools in deciphering the complex evolutionary history of the origin of East Asian–Tethyan disjunction of organisms, especially gymnosperms.
Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18
Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.
Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819
Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.
Sousa, R. L. M., F. G. de Carvalho, A. dos Santos Bragança Gil, T. B. Vieira, and T. S. Michelan. 2025. Temperature and precipitation influence the distribution of different Cyperaceae life forms: The role of protected areas in the Amazon for conservation. Biological Conservation 301: 110886. https://doi.org/10.1016/j.biocon.2024.110886
Climate change is the main cause of global biodiversity loss and changes in the structure of ecological communities. Species distribution models are an efficient tool for predicting suitable areas for species and their vulnerability to climate change. In this study, we evaluated the impact of precipitation and temperature (factors of climate change) on 12 species of the Cyperaceae family, classified into three groups: aquatic, amphibian, and terrestrial. Our results provide a comprehensive overview of habitat projections for aquatic, amphibian and terrestrial Cyperaceae species in the Amazon biome under current and future scenarios. We highlight significant range losses projected for species such as Scleria amazonica and Cyperus lacustris in the future. The relationship between climate and its influence on species distribution is critical, emphasizing the urgent need to conserve biodiversity in the face of climate change. In the models, protected areas were essential refuges for species under threat, highlighting their crucial role in preventing biodiversity loss. Variables such as temperature and seasonality (rainfall variability) strongly influenced the distribution patterns of Cyperaceae species. Seasonal fluctuations such as extreme droughts can influence water availability and the growth dynamics of hydrophytic plants. Amphibian species adapt to temperature fluctuations and changes in precipitation, while terrestrial plants prefer warmer and rainy regions. Our results emphasize the importance of conservation strategies for Amazonian species. We have also shown that protected areas play an essential role in conserving biodiversity and protecting Cyperaceae species from future changes.
Magri, R. A., F. Luebert, A. Cabral, S. Alcantara, L. G. Lohmann, J. Prado, and J. C. Lopes. 2024. Historical biogeography of Vellozia (Velloziaceae) reveals range expansion in South American mountaintops after climatic cooling events and increased diversification rates after the occupation of Southern Espinhaço Province. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boae072
The campos rupestres and the Brazilian Atlantic Forest Inselbergs (BAFI) are highly diverse vegetation types that grow on mountaintops of eastern Brazil and show outstanding levels of endemism. The plant family Velloziaceae is an iconic element of these vegetations, with the genus Vellozia, being exceptionally abundant in both these vegetations. In this study, we use Vellozia as a model to address three main questions: (i) What was the distribution of Vellozia’s most recent common ancestor? (ii) Did the range expansions of Vellozia occur during periods characterized by global cooling? (iii) When did Vellozia colonize the different South American highlands they occupy nowadays? To address these questions, we reconstructed the phylogeny of Vellozia using sequences of four molecular markers analysed using Bayesian and maximum likelihood inferences. We used the resulting phylogeny to reconstruct the ancestral distribution of Vellozia using the DEC model. Our findings indicate that Vellozia originated and subsequently diversified in the Oligocene, when the genus was broadly distributed through the Andes, BAFI, Cerrado, Caatinga, and the Chapada Diamantina, suggesting that the Cerrado may acted as a corridor between the Andes and eastern mountaintop vegetations. Vellozia subsequently occupied the southern Espinhaço during the Early Miocene, which was followed by increased diversification rates and several range expansions, especially after the Middle-Miocene Climatic Optimum, when cooler and drier periods allowed the expansion of open environments and the retraction of forests, allowing Vellozia to expand their distribution. These results highlight the unique evolutionary history of Vellozia and the importance of climatic cooling for the expansion of the genus.