Science Rendue Possible

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223. https://doi.org/10.3390/d16040223

Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.

Gama-Rodríguez, A. M., J. A. García, L. F. Lozano, and D. A. Prieto-Torres. 2024. Protecting breeding sites: a critical goal for the conservation of the golden eagle in Mexico under global change scenarios. Journal of Ornithology. https://doi.org/10.1007/s10336-024-02168-x

Impacts of global climate and land‐use changes on distribution patterns and breeding sites remain today poorly studied for several vulnerable emblematic bird species, including the Golden Eagle ( Aquila chrysaetos ). Herein, we analyzed the potential effect of global climate changes and agricultural activities on the distribution patterns of this top predator across Mexico. We assessed the long-term role of protected areas (PAs) for safeguarding the species’ overall distribution and its breeding sites. We evaluated current and future (2040s, 2060s, and 2080s) threats from global change using ecological niche modeling and geographic information system approaches to determine the percentage of the species’ distribution area that overlaps with highly human-modified areas and PAs under each climate scenario. We also used niche overlap tests to assess whether the species’ breeding sites show equivalence or similarity of climatic conditions over time. Our findings revealed shifts in the Golden Eagle’s distributional area, with an overall size reduction (by ~ 57% in the 2040s and ~ 78% in the 2080s) due to future environmental changes, mainly attributable to increasingly dry and warm conditions. Mexican PAs cover ~ 12% of the Golden Eagle’s range across country, but this decreased by > 33% on average under the species’ future distributions. Although the hypothesis of equivalent climatic conditions at breeding sites over time was rejected, those sites did have long-term climate similarity (niche overlap: 0.75–0.83; P  < 0.05). Considering the species’ nest site fidelity and that colonization of new areas within Mexico seems unlikely, protection of these breeding sites is a critical step for the long-term conservation of this emblematic species in Mexico. Brutplätze schützen: ein wichtiges Ziel für die Erhaltung des Steinadlers in Mexiko unter den Bedingungen des globalen Wandels Die Auswirkungen globaler Klima- und Landnutzungsänderungen auf die Verbreitungsmuster und Brutplätze mehrerer gefährdeter, symbolträchtiger Vogelarten, darunter der Steinadler (Aquila chrysaetos), sind bis heute kaum untersucht. In dieser Studie haben wir die potenziellen Auswirkungen globaler Klimaveränderungen und landwirtschaftlicher Aktivitäten auf die Verbreitungsmuster dieses Spitzenprädators in Mexiko untersucht. Wir bewerteten die langfristige Rolle von Schutzgebieten für die Sicherung der Gesamtverbreitung der Art und ihrer Brutplätze. Wir bewerteten aktuelle und zukünftige (2040, 2060 und 2080) Bedrohungen durch den globalen Wandel, indem wir ökologische Nischenmodelle und geografische Informationssysteme einsetzten, um den prozentualen Anteil des Verbreitungsgebiets der Art zu bestimmen, der sich mit stark vom Menschen veränderten Gebieten und Schutzgebieten unter jedem Klimaszenario überschneidet. Außerdem haben wir mit Hilfe von Nischenüberlappungstests untersucht, ob die Brutgebiete der Art im Laufe der Zeit gleichwertige oder ähnliche klimatische Bedingungen aufweisen. Unsere Ergebnisse zeigen, dass sich das Verbreitungsgebiet des Steinadlers aufgrund zukünftiger Umweltveränderungen insgesamt verkleinert (um ca. 57% in den 2040er Jahren und ca. 78% in den 2080er Jahren), was hauptsächlich auf zunehmend trockenere und wärmere Bedingungen zurückzuführen ist. Die mexikanischen Schutzgebiete decken landesweit etwa 12% des Verbreitungsgebiets des Steinadlers ab, doch wird dieser Anteil unter den zukünftigen Verbreitungsgebieten der Art im Durchschnitt um mehr als 33% abnehmen. Auch wenn wir die Hypothese über die Zeit gleichwertiger klimatischer Bedingungen an den Brutplätzen Zeit verwarfen, wiesen diese Standorte eine langfristige Klimaähnlichkeit auf (Nischenüberschneidung: 0,75-0,83; P < 0,05). In Anbetracht der Nistplatztreue der Art und der Tatsache, dass die Besiedlung neuer Gebiete in Mexiko unwahrscheinlich erscheint, ist der Schutz dieser Brutplätze ein entscheidender Schritt für die langfristige Erhaltung dieser emblematischen Art in Mexiko.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Vázquez-Rueda, E., A. P. Cuervo-Robayo, and J. Ayala-Berdon. 2023. Forest dependency could be more important than dispersal capacity for habitat connectivity of four species of insectivorous bats inhabiting a highly anthropized region in central Mexico. Mammal Research. https://doi.org/10.1007/s13364-023-00707-0

The maintenance, restoration, and improvement of habitat structure are critical for biodiversity conservation. Under this context, studies assessing habitat connectivity become essential, especially those focused on anthropized regions holding high species richness. We calculated the habitat connectivity of four species of insectivorous bats with different dispersal capacity and habitat preferences in a highly anthropized region in central Mexico, Idionycteris phyllotis and Myotis thysanodes , with a high dispersal capacity and forest-dependency, and Eptesicus fuscus with a low dispersal capacity, and Tadarida brasiliensis with a high dispersal capacity, as the more tolerant bat species to anthropogenic disturbance. We developed niche-based species distribution models to identify suitable habitat patches for each species. We then assessed habitat connectivity and the importance of suitable habitat patches for maintaining connectivity using a graph theory approach. Our results showed that forest dependency was most important than dispersal capacity for connectivity. We also found that the Iztaccíhuatl-Popocatépetl mountain, a National Park comprising 4.2% of natural vegetation in the study area, was the most critical patch for maintaining connectivity for most of the study species. Our study demonstrates the importance of conserving the remnants of natural vegetation for maintaining habitat connectivity within a fragmented landscape and demonstrates the importance of conserving protected areas as well as other remnants of vegetation for the maintenance of habitat connectivity within a fragmented landscape.

Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881. https://doi.org/10.3390/d15070881

Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Chincoya, D. A., S. Arias, F. Vaca-Paniagua, P. Dávila, and S. Solórzano. 2023. Phylogenomics and Biogeography of the Mammilloid Clade Revealed an Intricate Evolutionary History Arose in the Mexican Plateau. Biology 12: 512. https://doi.org/10.3390/biology12040512

Mexico harbors ~45% of world’s cacti species richness. Their biogeography and phylogenomics were integrated to elucidate the evolutionary history of the genera Coryphantha, Escobaria, Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora (Mammilloid Clade). We analyzed 52 orthologous loci from 142 complete genomes of chloroplast (103 taxa) to generate a cladogram and a chronogram; in the latter, the ancestral distribution was reconstructed with the Dispersal-Extinction-Cladogenesis model. The ancestor of these genera arose ~7 Mya on the Mexican Plateau, from which nine evolutionary lineages evolved. This region was the site of 52% of all the biogeographical processes. The lineages 2, 3 and 6 were responsible for the colonization of the arid southern territories. In the last 4 Mya, the Baja California Peninsula has been a region of prolific evolution, particularly for lineages 8 and 9. Dispersal was the most frequent process and vicariance had relevance in the isolation of cacti distributed in the south of Mexico. The 70 taxa sampled as Mammillaria were distributed in six distinct lineages; one of these presumably corresponded to this genus, which likely had its center of origin in the southern part of the Mexican Plateau. We recommend detailed studies to further determine the taxonomic circumscription of the seven genera.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.