Science Rendue Possible

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …

de Gabriel Hernando, M., J. Fernández‐Gil, I. Roa, J. Juan, F. Ortega, F. de la Calzada, and E. Revilla. 2021. Warming threatens habitat suitability and breeding occupancy of rear‐edge alpine bird specialists. Ecography 44: 1191–1204. https://doi.org/10.1111/ecog.05593

Alpine ecosystems are particularly vulnerable to climate change. For widely distributed alpine specialists, rear-edge populations are disproportionately important; it is expected that climate change will reduce their occupancy ranges due to the loss of suitable habitats and connectivity among them. …

Williamson, J. L., and C. C. Witt. 2021. Elevational niche-shift migration: Why the degree of elevational change matters for the ecology, evolution, and physiology of migratory birds. Ornithology 138. https://doi.org/10.1093/ornithology/ukaa087

Elevational migration can be defined as roundtrip seasonal movement that involves upward and downward shifts in elevation. These shifts incur physiological challenges that are proportional to the degree of elevational change. Larger shifts in elevation correspond to larger shifts in partial pressure…

Wieringa, J. G., B. C. Carstens, and H. L. Gibbs. 2021. Predicting migration routes for three species of migratory bats using species distribution models. PeerJ 9: e11177. https://doi.org/10.7717/peerj.11177

Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is impo…

Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Cardador, L., and T. M. Blackburn. 2020. A global assessment of human influence on niche shifts and risk predictions of bird invasions B. McGill [ed.],. Global Ecology and Biogeography 29: 1956–1966. https://doi.org/10.1111/geb.13166

Aim: Estimating the strength of niche conservatism is key for predictions of invasion risk. Most studies consider only the climatic niche, but other factors, such as human disturbance, also shape niches. Whether occupation of human habitats in the alien range depends on the native tolerances of spec…

Rotenberry, J. T., and P. Balasubramaniam. 2020. Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography 43: 897–913. https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Menegotto, A., T. F. Rangel, J. Schrader, P. Weigelt, and H. Kreft. 2019. A global test of the subsidized island biogeography hypothesis A. M. C. dos Santos [ed.],. Global Ecology and Biogeography 29: 320–330. https://doi.org/10.1111/geb.13032

Aim: The decreasing capacity of area to predict species richness on small islands (the small‐island effect; SIE) seems to be one of the few exceptions of the species–area relationship. While most studies have focused on how to detect the SIE, the underlying ecological factors determining this patter…

Liu, X., T. M. Blackburn, T. Song, X. Li, C. Huang, and Y. Li. 2019. Risks of Biological Invasion on the Belt and Road. Current Biology 29: 499-505.e4. https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…