Science Rendue Possible

O’Mahony, J., de la Torre Cerro, R., & Holloway, P. (2021). Modelling the Distribution of the Red Macroalgae Asparagopsis to Support Sustainable Aquaculture Development. AgriEngineering, 3(2), 251–265. doi:10.3390/agriengineering3020017 https://doi.org/10.3390/agriengineering3020017

Fermentative digestion by ruminant livestock is one of the main ways enteric methane enters the atmosphere, although recent studies have identified that including red macroalgae as a feed ingredient can drastically reduce methane produced by cattle. Here, we utilize ecological modelling to identify …

Jin, W.-T., Gernandt, D. S., Wehenkel, C., Xia, X.-M., Wei, X.-X., & Wang, X.-Q. (2021). Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences, 118(20), e2022302118. doi:10.1073/pnas.2022302118 https://doi.org/10.1073/pnas.2022302118

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest…

Rock, B. M., & Daru, B. H. (2021). Impediments to Understanding Seagrasses’ Response to Global Change. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.608867 https://doi.org/10.3389/fmars.2021.608867

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate chang…

Horta, P., Pinho, P. F., Gouvea, L., Grimaldi, G., Destri, G., Mueller, C. M., … Cotrim da Cunha, L. (2020). Climate change and Brazil’s coastal zone: socio-environmental vulnerabilities and action strategies. Sustentabilidade Em Debate, 11(3), 405–444. doi:10.18472/sustdeb.v11n3.2020.33845 https://doi.org/10.18472/sustdeb.v11n3.2020.33845

The coastal zone, where most of the Brazilian population lives, plays a central role for discussing vulnerability and adaptation strategies to climate change. Besides saltmarshes, mangroves and coral reefs, this region also presents seagrass beds, macroalgae and rhodolith beds, forming underwater fo…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Fragkopoulou, E., Serrão, E. A., Horta, P. A., Koerich, G., & Assis, J. (2021). Bottom Trawling Threatens Future Climate Refugia of Rhodoliths Globally. Frontiers in Marine Science, 7. doi:10.3389/fmars.2020.594537 https://doi.org/10.3389/fmars.2020.594537

Climate driven range shifts are driving the redistribution of marine species and threatening the functioning and stability of marine ecosystems. For species that are the structural basis of marine ecosystems, such effects can be magnified into drastic loss of ecosystem functioning and resilience. Rh…

Mertens, A., Swennen, R., Rønsted, N., Vandelook, F., Panis, B., Sachter‐Smith, G., … Janssens, S. B. (2021). Conservation status assessment of banana crop wild relatives using species distribution modelling. Diversity and Distributions. doi:10.1111/ddi.13233 https://doi.org/10.1111/ddi.13233

Aim: Crop wild relatives (CWR) are an essential source of genetic material for the improvement of certain traits in related crop species. Despite their importance, increasing public, scientific and political support, large gaps exist in the amount of genetic material collected and conserved of many…

Beca-Carretero, P., Teichberg, M., Winters, G., Procaccini, G., & Reuter, H. (2020). Projected Rapid Habitat Expansion of Tropical Seagrass Species in the Mediterranean Sea as Climate Change Progresses. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.555376 https://doi.org/10.3389/fpls.2020.555376

During the last 150 years, the tropical seagrass species Halophila stipulacea has established itself in the southern and eastern parts of the Mediterranean Sea. More recently (2018), Halophila decipiens was observed for the first time in the eastern Mediterranean, and was described as the second non…

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…

Rozefelds, A. C., Stull, G., Hayes, P., & Greenwood, D. R. (2020). The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes. Historical Biology, 1–11. doi:10.1080/08912963.2020.1832089 https://doi.org/10.1080/08912963.2020.1832089

Fossil fruits of Icacinaceae are recorded from two Cenozoic sites in Australia, at Launceston in northern Tasmania and the Poole Creek palaeochannel in northern South Australia, representing the first report of fossil Icacinaceae from Australia. The Launceston material includes two endocarps with br…