Science Rendue Possible

Lima‐Rezende, C. A., G. S. Cabanne, A. V. Rocha, M. Carboni, R. M. Zink, and R. Caparroz. 2022. A comparative phylogenomic analysis of birds reveals heterogeneous differentiation processes among Neotropical savannas. Molecular Ecology 31: 3451–3467. https://doi.org/10.1111/mec.16487

The main objective of this study is to evaluate biogeographic hypotheses of diversification and connection between isolated savannas north (Amazonian savannas) and south (Cerrado core) of the Amazon River. To achieve our goal, we employed genomic markers (genotyping‐by‐sequencing) to evaluate the genetic structure, population phylogenetic relationships, and historical range shifts of four Neotropical passerines with peri‐Atlantic distributions: the Narrow‐billed Woodcreeper (Lepidocolaptes angustirostris), the Plain‐crested Elaenia (Elaenia cristata), the Grassland Sparrow (Ammodramus humeralis), and the White‐banded Tanager (Neothraupis fasciata). The population genetic analyses indicated that landscape (e.g., geographic distance, landscape resistance, and percentage of tree cover) and climate metrics explained divergence among populations in most species, but without indicating a differential role between current and historical factors. Our results did not fully support the hypothesis that isolated populations at Amazonian savannas have been recently derived from the Cerrado core domain. Intraspecific phylogenies and gene flow analyses supported multiple routes of connection between the Cerrado and Amazonian savannas, rejecting the hypothesis that the Atlantic corridor explains the peri‐Atlantic distribution. Our results reveal that the biogeographic history of the region is complex and cannot be explained by simple vicariant models.

Cardador, L., P. Abellán, and T. M. Blackburn. 2021. Incorporating phylogeographic information in alien bird distribution models increases geographic extent but not accuracy of predictions. Biological Invasions 24: 683–695. https://doi.org/10.1007/s10530-021-02673-7

Species distribution models (SDM) have been proposed as valuable first screening tools for predicting species responses to new environmental conditions. SDMs are usually conducted at the species level, assuming that species-environment relationships are a species-specific feature that do not evolve …

Prieto-Torres, D. A., L. E. Nuñez Rosas, D. Remolina Figueroa, and M. del C. Arizmendi. 2021. Most Mexican hummingbirds lose under climate and land-use change: Long-term conservation implications. Perspectives in Ecology and Conservation 19: 487–499. https://doi.org/10.1016/j.pecon.2021.07.001

Hummingbirds are one of the most threatened bird groups in the world. However, the extent to which global climate change (GCC) and habitat loss compromise their conservation status remains unclear. Herein, we proposed to: (1) assess how predicted GCC impacts the distribution of non-migrant hummingbi…

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …

Ramírez‐Albores, J. E., D. A. Prieto‐Torres, A. Gordillo‐Martínez, L. E. Sánchez‐Ramos, and A. G. Navarro‐Sigüenza. 2020. Insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds A. Hughes [ed.],. Diversity and Distributions 27: 18–33. https://doi.org/10.1111/ddi.13153

Aim: To assess the representativeness values of Mesoamerican endemic birds within the current network of protected areas (PAs) to determine high‐priority and complementary conservation areas to maximize the long‐term protection of species. Location: From central Mexico to southern Panama. Methods:…

Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…

Cardador, L., and T. M. Blackburn. 2020. A global assessment of human influence on niche shifts and risk predictions of bird invasions B. McGill [ed.],. Global Ecology and Biogeography 29: 1956–1966. https://doi.org/10.1111/geb.13166

Aim: Estimating the strength of niche conservatism is key for predictions of invasion risk. Most studies consider only the climatic niche, but other factors, such as human disturbance, also shape niches. Whether occupation of human habitats in the alien range depends on the native tolerances of spec…

Rotenberry, J. T., and P. Balasubramaniam. 2020. Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography 43: 897–913. https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Prieto-Torres, D. A., A. Lira-Noriega, and A. G. Navarro-Sigüenza. 2020. Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation 18: 19–30. https://doi.org/10.1016/j.pecon.2020.01.002

We assessed the effects of global climate change as a driver of spatio-temporal biodiversity patterns in bird assemblages associated to Neotropical seasonally dry forests (NSDF). For this, we estimated the geographic distribution of 719 bird species under current and future climate (2050 and 2070) p…