Science Rendue Possible

Issaly, E. A., M. C. Baranzelli, N. Rocamundi, A. M. Ferreiro, L. A. Johnson, A. N. Sérsic, and V. Paiaro. 2023. Too much water under the bridge: unraveling the worldwide invasion of the tree tobacco through genetic and ecological approaches. Biological Invasions.

Understanding how, and from where, invasive species were introduced is critical for revealing the invasive mechanism, explaining the invasion success, and providing crucial insights for effective management. Here, we combined a phylogeographic approach with ecological niche modeling comparisons to elucidate the introduction mode and source of Nicotiana glauca , a native South American species that is now invasive worldwide. We tested three different scenarios based on the invasion source—random native, restricted native, and bridgehead invasive—considering genetic diversity and climatic niche comparisons among native and invaded areas. We found three genetic lineages geographically and climatically differentiated within the native range. Only one of these genetic groups contained the invasive haplotypes, but showed no climatic niche overlap with any invaded area. Conversely, one invaded area located in western South America, with more genetic diversity than other invaded areas but less than the native range, showed climatic niche overlap with almost all other invaded areas worldwide. These findings indicate that N. glauca first likely invaded the southernmost areas beyond its native range, forming a bridgehead invasive source, from which the species subsequently invaded other regions around the world. Invasiveness would have been fostered by changes in the environmental preferences of the species in the bridgehead area, towards drier, colder and less seasonal climates, becoming the actual source of invasion to areas climatically similar throughout the world. The fine scale resolution analyses combining genetic and climatic approaches within the native range were essential to illuminating the introduction scenario of this invasive species.

Kudoh, A., J. P. Megonigal, J. A. Langley, G. L. Noyce, T. Sakai, and D. F. Whigham. 2023. Reproductive Responses to Increased Shoot Density and Global Change Drivers in a Widespread Clonal Wetland Species, Schoenoplectus americanus. Estuaries and Coasts.

The expansion of many wetland species is a function of both clonal propagation and sexual reproduction. The production of ramets through clonal propagation enables plants to move and occupy space near parent ramets, while seeds produced by sexual reproduction enable species to disperse and colonize open or disturbed sites both near and far from parents. The balance between clonal propagation and sexual reproduction is known to vary with plant density but few studies have focused on reproductive allocation with density changes in response to global climate change. Schoenoplectus americanus is a widespread clonal wetland species in North America and a dominant species in Chesapeake Bay brackish tidal wetlands. Long-term experiments on responses of S . americanus to global change provided the opportunity to compare the two modes of propagation under different treatments. Seed production increased with increasing shoot density, supporting the hypothesis that factors causing increased clonal reproduction (e.g., higher shoot density) stimulate sexual reproduction and dispersal of genets. The increase in allocation to sexual reproduction was mainly the result of an increase in the number of ramets that flowered and not an increase in the number of seeds per reproductive shoot, or the ratio between the number of flowers produced per inflorescence and the number of flowers that developed into seeds. Seed production increased in response to increasing temperatures and decreased or did not change in response to increased CO 2 or nitrogen. Results from this comparative study demonstrate that plant responses to global change treatments affect resource allocation and can alter the ability of species to produce seeds.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069.

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

McCulloch-Jones, E. J., T. Kraaij, N. Crouch, and K. T. Faulkner. 2023. Assessing the invasion risk of traded alien ferns using species distribution models. NeoBiota 87: 161–189.

Risk analysis plays a crucial role in regulating and managing alien and invasive species but can be time-consuming and costly. Alternatively, combining invasion and impact history with species distribution models offers a cost-effective and time-efficient approach to assess invasion risk and identify species for which a comprehensive risk analysis should take precedence. We conducted such an assessment for six traded alien fern species, determining their invasion risk in countries where they are traded. Four of the species (Dicksonia antarctica, Dryopteris erythrosora, Lygodium japonicum, and Phlebodium aureum) showed limited global distributions, while Adiantum raddianum and Sphaeropteris cooperi had broader distributions. A. raddianum, however, was the only species found to pose a high invasion risk in two known trade countries – the USA and Australia – and requires a complete risk analysis to determine the appropriate regulatory responses. Dicksonia antarctica, Phlebodium aureum (for New Zealand), and Dryopteris erythrosora (for the USA) posed a medium risk of invasion due to the lack of evidence of impacts, and a complete risk analysis is thus deemed less crucial for these species in these countries. For other species, suitable environments were not predicted in the countries where they are traded, thus the risk of invasion is low, and a complete risk analysis is not required. For species in countries where suitable environments are predicted but no trade information or presence data are available, risk assessments are recommended to better determine the risk posed. Despite the relatively limited potential global distribution of the studied ferns relative to other major plant invaders (e.g., Pinus spp. and Acacia spp.), their history of invasion, documented impacts in pristine environments, and high propagule pressure from trade warrants concern, possibly necessitating legislative and regulatory measures in environmentally suitable regions.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany.

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research.

The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.

Freire-Fierro, A., F. Forest, D. S. Devey, J. F. B. Pastore, J. W. Horn, X.-J. Ge, Z. Wang, et al. 2023. Monnina (Polygalaceae), a New World monophyletic genus full of contrasts. Botanical Journal of the Linnean Society.

Endemic to the Neotropics, Monnina is the second largest genus of Polygalaceae, yet little is known about its phylogenetic history, biogeography, and morphological character evolution. To address these knowledge gaps, we conducted Bayesian and maximum likelihood (ML) analyses of nuclear ITS and plastid trnL–F regions to test the monophyly of Monnina s.l. We used this phylogenetic framework to (i) infer divergence time estimates of lineages within the genus and reconstruct their historical biogeography; (ii) reconstruct the evolution of morphological characters of putative ecological and evolutionary importance in Monnina; and (iii) test for correlations between our phylogenetic hypothesis and environmental data. Our results reveal that Monnina is monophyletic with an indehiscent, 1–2-seeded fruit as a synapomorphy for the genus. We identify six clades within Monnina based on our combined phylogenetic results: Clades A, B, and D are primarily distributed in southern and eastern South America, Clades C and E are primarily Central Andean, and Clade F is chiefly distributed in the Northern Andes and Central America. The ancestor of the Monnina stem lineage dispersed from Australia/Africa to South America during the late Eocene to early Oligocene. The divergences of major lineages within the genus began in the early Miocene. We inferred the most recent common ancestor of Monnina to be an herbaceous plant with one-seeded samaroid fruits. The origins of fleshy fruits and shrubby habits are phylogenetically correlated within Monnina, and their concerted convergent evolution may have promoted increased net diversification rates in the two most species-rich subclades of the genus.

Tataridas, A., M. Moreira, L. Frazão, P. Kanatas, N. Ota, and I. Travlos. 2023. Biology of Invasive Plants 5. Solanum elaeagnifolium Cav. Invasive Plant Science and Management: 1–53.

(no abstract available)

Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721.

The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld.

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.