Science Rendue Possible

Marks, R. A., P. Delgado, G. M. Makonya, K. Cooper, R. VanBuren, and J. M. Farrant. 2024. Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erae126

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water limited conditions. Many resurrection plants are polyploid and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and larger than plants with smaller genomes and lower ploidy. These data suggest that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance that are mediated by changes in ploidy.

Karimi, N., and M. M. Hanes. 2024. Patterns of Grewia (Malvaceae) diversity across geographic scales in Africa and Madagascar. Annals of Botany. https://doi.org/10.1093/aob/mcae009

Background and aims Quantifying spatial species richness is useful to describe biodiversity patterns across broad geographic areas, especially in large, poorly known plant groups. We explore patterns and predictors of species richness across Africa in one such group; the paleotropical genus Grewia L. (Malvaceae). Methods Grewia species richness was quantified by extracting herbarium records from GBIF and Tropicos and creating geographic grids at varying spatial scales. We assessed predictors of species richness using spatial regression models with 30 environmental variables. We explored species co-occurrence in Madagascar at finer resolutions using Schoener's index, and compared species’ range sizes and IUCN status among ecoregions. Lastly, we derived a trait matrix for a subset of species found in Madagascar to characterize morphological diversity across space. Key Results Grewia species occur in 50 countries in Africa, with the highest number of species in Madagascar (93, with 80 species endemic). Species richness is highest in Madagascar, with up to 23 Grewia species in a grid cell, followed by coastal Tanzania/Kenya (up to 13 species), and northern South Africa and central Angola (11 species each). Across Africa, higher species richness was predicted by variables related to aridity. In Madagascar, a greater range in environmental variables best predicted species richness, consistent with geographic grid cells of highest species richness occurring near biome/ecoregion transitions. In Madagascar we also observe increasing dissimilarity in species composition with increasing geographic distance. Conclusions The spatial patterns and underlying environmental predictors that we uncover in Grewia represent an important step in our understanding of plant distribution and diversity patterns across Africa. Madagascar boasts nearly twice the Grewia species richness, compared to the second most species-rich country in Africa, which might be explained by complex topography and environmental conditions across small spatial scales.

Ngarega, B. K., P. Chaibva, V. F. Masocha, J. K. Saina, P. K. Khine, and H. Schneider. 2023. Application of MaxEnt modeling to evaluate the climate change effects on the geographic distribution of Lippia javanica (Burm.f.) Spreng in Africa. Environmental Monitoring and Assessment 196. https://doi.org/10.1007/s10661-023-12232-3

Lippia javanica is a typical indigenous plant species mostly found in the higher elevation or mountainous regions in southern, central, and eastern Africa. The ongoing utilization of the species for ethnobotanical applications and traditional uses, coupled with the changing climate, increases the risk of a potential reduction in its geographic distribution range in the region. Herein, we utilized the MaxEnt species distribution modelling to build the L. javanica distribution models in tropical and subtropical African regions for current and future climates. The MaxEnt models were calibrated and fitted using 286 occurrence records and six environmental variables. Temperatures, including temperature seasonality [Bio 4] and the maximum temperature of the warmest month [Bio 5], were observed to be the most significant determinants of L. javanica’s distribution. The current projected range for L. javanica was estimated to be 2,118,457 km 2 . Future model predictions indicated that L. javanica may increase its geographic distribution in western areas of the continent and regions around the equator; however, much of the geographic range in southern Africa may shift southwards, causing the species to lose portions of the northern limits of the habitat range. These current findings can help increase the conservation of L. javanica and other species and combat localized species loss induced by climate change and human pressure. We also emphasize the importance of more investigations and enhanced surveillance of traditionally used plant species in regions that are acutely susceptible to climate change.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Hidalgo-Triana, N., F. Casimiro-Soriguer Solanas, A. Solakis Tena, A. V. Pérez-Latorre, and J. García-Sánchez. 2022. Melinis repens (Willd.) Zizka subsp. repens (Poaceae) in Europe: distribution, ecology and potential invasion. Botany Letters 169: 390–399. https://doi.org/10.1080/23818107.2022.2080111

Melinis repens subsp. repens is an annual herb native to Africa and southwestern Asia. In 2008, this species was detected growing in road verges and showing a reduced occupancy area of 6 km2 in a natural area of the southern Iberian Peninsula in the province of Malaga (Andalusia, Spain). The rest of the existing European records of this species comes from the Czech Republic, the Italian Peninsula, and Great Britain and can be considered casual. Furthermore, this species has become naturalised in Sardinia. The aim of this work is to study the invasion status, habitats, potential impacts, invasive behaviour, and pathways of introduction of Melinis repens subsp. repens in the southern Iberian Peninsula (Spain) to contribute to the control of this species. This species was most probably introduced into Europe for ornamental, fodder, or slope stabilization purposes. Our field work revealed this species has become naturalised in several habitats of Malaga and Granada provinces (Andalusia) occupying an area of 263 km2 in 2021. It behaves as a pioneer species that colonizes disturbed road margins and occurs in the same habitat as Cenchrus setaceus. Melinis repens subsp. repens can become dominant in natural EUNIS habitats and can also occupy cultivated areas. Because of the high occupancy area detected, and because the species has been assigned to the European Union List of Invasive Alien Plants based on the EPPO prioritization process, this plant should be considered the object of a control programme and its use should be legally prohibited in Spain, and more largely in European Mediterranean areas.

Odorico, D., E. Nicosia, C. Datizua, C. Langa, R. Raiva, J. Souane, S. Nhalungo, et al. 2022. An updated checklist of Mozambique’s vascular plants. PhytoKeys 189: 61–80. https://doi.org/10.3897/phytokeys.189.75321

An updated checklist of Mozambique’s vascular plants is presented. It was compiled referring to several information sources such as existing literature, relevant online databases and herbaria collections. The checklist includes 7,099 taxa (5,957 species, 605 subspecies, 537 varieties), belonging to …

Beaulieu, W. T., D. G. Panaccione, Q. N. Quach, K. L. Smoot, and K. Clay. 2021. Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Communications Biology 4. https://doi.org/10.1038/s42003-021-02870-z

Heritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in …

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Cahen, D., J. Rickenback, and T. M. A. Utteridge. 2021. A revision of Ziziphus (Rhamnaceae) in Borneo. Kew Bulletin 76: 767–804. https://doi.org/10.1007/s12225-021-09970-3

The genus Ziziphus (Rhamnaceae) is revised for Borneo. 13 species are recognised using morphological evidence, including three new endemic species: Ziziphus cuspidata, Z. domatiata and Z. puberula. Borneo is therefore the island with the greatest known diversity of Ziziphus species. The area surroun…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…