Science Rendue Possible

Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699. https://doi.org/10.1111/ele.13889

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

Wham, B. E., S. R. Rahman, M. Martinez‐Correa, and H. M. Hines. 2021. Mito‐nuclear discordance at a mimicry color transition zone in bumble bee Bombus melanopygus. Ecology and Evolution 11: 18151–18168. https://doi.org/10.1002/ece3.8412

As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee, Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Roc…

Lewthwaite, J. M. M., and A. Ø. Mooers. 2021. Geographical homogenization but little net change in the local richness of Canadian butterflies A. Baselga [ed.],. Global Ecology and Biogeography 31: 266–279. https://doi.org/10.1111/geb.13426

Aim: Recent studies have found that local-scale plots measured through time exhibit marked variation in the change in species richness. However, the overall effect often reveals no net change. Most studies to date have been agnostic about the identities of the species lost/gained and about the proce…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32. https://doi.org/10.1002/eap.2494

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …

Koch, J. B. U., J. A. Tabor, K. Montoya-Aiona, and J. A. Eiben. 2021. The Invasion of Megachile policaris (Hymenoptera: Megachilidae) to Hawai‘i K. Godfrey [ed.],. Journal of Insect Science 21. https://doi.org/10.1093/jisesa/ieab065

Islands are insular environments that are negatively impacted by invasive species. In Hawai‘i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genet…

Hemberger, J., M. S. Crossley, and C. Gratton. 2021. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence C. Scherber [ed.],. Ecology Letters 24: 1800–1813. https://doi.org/10.1111/ele.13786

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enh…

Murray, E. A., L. Evanhoe, S. Bossert, M. A. Geber, T. Griswold, and S. M. McCoshum. 2021. Phylogeny, Phenology, and Foraging Breadth of Ashmeadiella (Hymenoptera: Megachilidae) E. Almeida [ed.],. Insect Systematics and Diversity 5. https://doi.org/10.1093/isd/ixab010

Ashmeadiella Cockerell (Megachilidae: Osmiini) is a bee genus endemic to North America, with greatest richness in arid and Mediterranean regions of the southwestern United States. Species relationships of Ashmeadiella were last analyzed in the 1950s, when Robert Sokal and Charles Michener developed …

Tabor, J. A., and J. B. Koch. 2021. Ensemble Models Predict Invasive Bee Habitat Suitability Will Expand under Future Climate Scenarios in Hawai’i. Insects 12: 443. https://doi.org/10.3390/insects12050443

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resou…

Ji, Y. 2021. The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie 52: 367–377. https://doi.org/10.1007/s13592-020-00826-6

An understanding of the origin and formation of biodiversity and distribution patterns can provide a theoretical foundation for biodiversity conservation. In this study, phylogeny and biogeography analyses based on mitochondrial genomes and niche modeling based on occurrence records were performed t…

Orr, M. C., A. C. Hughes, D. Chesters, J. Pickering, C.-D. Zhu, and J. S. Ascher. 2021. Global Patterns and Drivers of Bee Distribution. Current Biology 31: 451-458.e4. https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…