Science Rendue Possible

Campbell, C., G. Granath, and H. Rydin. 2021. Climatic drivers of Sphagnum species distributions. Frontiers of Biogeography 13. https://doi.org/10.21425/f5fbg51146

Peatmosses(genus Sphagnum) dominate most Northern mires and show distinct distributional limits in Europe despite having efficient dispersal and few dispersal barriers. This pattern indicates that Sphagnum species distributions are strongly linked to climate. Sphagnumdominated mires have been the la…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Kolanowska, M. 2021. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation 32: e01939. https://doi.org/10.1016/j.gecco.2021.e01939

The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Ma, C.-S., W. Zhang, Y. Peng, F. Zhao, X.-Q. Chang, K. Xing, L. Zhu, et al. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications 12. https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

deCastro-Arrazola, I., M. March-Salas, and J. Lorite. 2021. Assessment of the Potential Risk of Rock-Climbing for Cliff Plant Species and Natural Protected Areas of Spain. Frontiers in Ecology and Evolution 9. https://doi.org/10.3389/fevo.2021.611362

In recent years, the popularity of rock-climbing has grown tremendously, setting an increasing pressure on cliff habitats. Climbing may be particularly harmful in the Mediterranean biome due to its appropriate environmental conditions for climbing. A few studies have identified the effect of climbin…

Zanatta, F., R. Engler, F. Collart, O. Broennimann, R. G. Mateo, B. Papp, J. Muñoz, et al. 2020. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications 11. https://doi.org/10.1038/s41467-020-19410-8

The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate.…

Ronquillo, C., F. Alves-Martins, V. Mazimpaka, T. Sobral-Souza, B. Vilela-Silva, N. G. Medina, and J. Hortal. 2020. Assessing spatial and temporal biases and gaps in the publicly available distributional information of Iberian mosses. Biodiversity Data Journal 8. https://doi.org/10.3897/bdj.8.e53474

One of the most valuable initiatives on massive availability of biodiversity data is the Global Biodiversity Information Facility, which is creating new opportunities to develop and test macroecological knowledge. However, the potential uses of these data are limited by the gaps and biases associate…

Klages, J. P., U. Salzmann, T. Bickert, C.-D. Hillenbrand, K. Gohl, G. Kuhn, et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580: 81–86. https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Pisarenko, O. Yu., V. A. Bakalin, and E. A. Ignatova. 2020. Hookeria acutifolia (Hookeriaceae, Bryophyta), a new species for the moss flora of Russia. Botanica Pacifica. https://doi.org/10.17581/bp.2020.09104

Hookeria acutifolia Hook. & Grev. was found on Kunashir Island (South Kuril Islands, East Asia). This is the northernmost locality of the species in Asia and the first record for Russia. A description and illustrations of the species based on the Russian specimen are provided. Details on its ecology…