Science Rendue Possible

Roberts, J., and S. Florentine. 2025. Current and future management challenges for globally invasive grasses, with special reference to Echinochloa crus‐galli, Panicum capillare and Sorghum halepense. Weed Research 65. https://doi.org/10.1111/wre.70005

Without appropriate and ongoing management interventions, weeds will continue to economically and environmentally disadvantage agricultural and natural ecosystems. For these management strategies to have long‐term sustained success, they need to carefully consider the biological aspects of the targeted weed. These strategies will also need to consider potential adaptations evolved by the targeted weed in response to a range of selection pressures imposed by anthropogenetic factors, climate change, changing environmental conditions, and inappropriate or unsuccessful management regimes. One group of weeds that has been observed to readily adapt to a wide range of conditions and has shown considerable challenges in their management is invasive grasses. Adding to these challenges is that several invasive grasses have also developed resistance to a range of herbicide modes of action, which, to date, has been one of the most commonly used methods of control. To address these challenges, this review explores the biology and ecology of the globally invasive annuals Echinochloa crus‐galli (Barnyard grass) and Panicum capillare (Witchgrass), and the perennial Sorghum halepense (Johnson grass) to identify (i) the most suitable management options for their control and (ii) potential research gaps that may assist in the future management direction of these species. Based on the findings of this review, it is clear that an integrated management approach that targets different aspects of the plant's biology, in combination with early detection and treatment and ongoing surveillance, is necessary for the long‐term control of these species. Although a combination of methods appears promising, further investigation still is required to evaluate their efficiency and long‐term success in a changing environment, all of which are further discussed within this review.

Buck, W. R., and B. Goffinet. 2024. A new checklist of the mosses of the continental United States and Canada1. The Bryologist 127. https://doi.org/10.1639/0007-2745-127.4.484

The checklist includes a listing of the genera and species of North American Bryophyta thought to occur in the continental United States and Canada. The floras of Mexico, Hawaii and Greenland are not included. The current list recognizes 1565 species, 12 subspecies, 34 varieties and one form (for a total of 1612 taxa) in 366 genera and 100 families. As a preface to the list, a systematic arrangement of the families and included genera for North America is presented. Many changes from the previous checklist are documented via footnotes that provide references to where changes were made. Only synonymy since the previous checklist is included. Twenty nomenclatural changes are made. These include 19 new combinations: Bryum brassicoides (≡ Gemmabryum brassicoides), B. pacificum (≡ Ptychostomum pacificum), B. torenii (≡ Imbribryum torenii), B. vinosum (≡ Gemmabryum vinosum), Chionoloma maragniphyllum (≡ Oxystegus maragniphyllus), Lescuraea tribulosa (≡ Pseudoleskea tribulosa), Pterygoneurum 3kieneri (≡ P. subsessile var. kieneri Habeeb), Pylaisiadelpha canadensis (≡ Brotherella canadensis), Streblotrichum convolutum var. eustegium (≡ Barbula eustegia), Streblotrichum convolutum var. gallinula (≡ Barbula convoluta var. gallinula), Voitia angustata (≡ Splachnum angustatum), V. mnioides (≡ Splachnum mnioides), V. pallida (≡ Tetraplodon pallidus), V. paradoxa (≡ Splachnum paradoxum), V. urceolata (≡ Splachnum urceolatum), Warnstorfia badia (≡ Hypnum badium), W. straminea (≡ Hypnum stramineum), W. straminea var. patens (Lindb.) (≡ Amblystegium stramineum var. patens), W. wickesiae (≡ Calliergon wickesiae). A new order is also introduced: Rhizogemmales W.R.Buck & Goffinet (≡ Rhizogemmaceae Bonfim Santos, Siebel & Fedosov).

Liu, H., X. Feng, Y. Zhao, G. Lv, C. Zhang, Aruhan, T.-A. Damba, et al. 2024. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Frontiers in Pharmacology 15. https://doi.org/10.3389/fphar.2024.1449426

The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.

MOLINO, S., G. SANTOS, R. VÁZQUEZ, R. MEDINA, and J. M. G. Y. GALÁN. 2024. Monograph of the genera Struthiopteris Scop. and Spicantopsis Nakai (Blechnaceae, Polypodiopsida). Phytotaxa 677: 1–48. https://doi.org/10.11646/phytotaxa.677.1.1

The Blechnaceae fern family, comprising approximately 250 species, exhibits a subcosmopolitan distribution but showcases notable diversity in South America and the Austropacific region. Recent taxonomic revisions expanded the generic treatment within the family, Resulting, among other things, in the resurrection of the genus Spicantopsis. This genus, segregated from Struthiopteris, now encompasses three species endemic to East Asia. Struthiopteris, on the other hand, has three species distributed in Japan, Europe, North of Africa, and western North America. Molecular evidence, coupled with morphoanatomical traits, supported this taxonomic distinction. Despite subsequent studies on palynological and morphoanatomical characteristics, a comprehensive global monograph of Struthiopteris and Spicantopsis is lacking. This paper aims to fill this gap by synthesizing available information, providing identification keys, full descriptions, taxonomic notes, and some necessary type designation for all species within both genera. The study, based on the examination of 1,649 herbarium specimens and digital materials, underscores the importance of anatomical and morphological characters in fern taxonomy. Mapping distribution data further enhances understanding of the geographic ranges of these ferns. This comprehensive synthesis contributes to the ongoing elucidation of fern diversity and taxonomy.

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.

Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w

Abstract  Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

Ract, C., N. D. Burgess, L. Dinesen, P. Sumbi, I. Malugu, J. Latham, L. Anderson, et al. 2024. Nature Forest Reserves in Tanzania and their importance for conservation S. S. Romanach [ed.],. PLOS ONE 19: e0281408. https://doi.org/10.1371/journal.pone.0281408

Since 1997 Tanzania has undertaken a process to identify and declare a network of Nature Forest Reserves (NFRs) with high biodiversity values, from within its existing portfolio of national Forest Reserves, with 16 new NFRs declared since 2015. The current network of 22 gazetted NFRs covered 948,871 hectares in 2023. NFRs now cover a range of Tanzanian habitat types, including all main forest types—wet, seasonal, and dry—as well as wetlands and grasslands. NFRs contain at least 178 of Tanzania’s 242 endemic vertebrate species, of which at least 50% are threatened with extinction, and 553 Tanzanian endemic plant taxa (species, subspecies, and varieties), of which at least 50% are threatened. NFRs also support 41 single-site endemic vertebrate species and 76 single-site endemic plant taxa. Time series analysis of management effectiveness tracking tool (METT) data shows that NFR management effectiveness is increasing, especially where donor funds have been available. Improved management and investment have resulted in measurable reductions of some critical threats in NFRs. Still, ongoing challenges remain to fully contain issues of illegal logging, charcoal production, firewood, pole-cutting, illegal hunting and snaring of birds and mammals, fire, wildlife trade, and the unpredictable impacts of climate change. Increased tourism, diversified revenue generation and investment schemes, involving communities in management, and stepping up control measures for remaining threats are all required to create a network of economically self-sustaining NFRs able to conserve critical biodiversity values.

Alfaro-Saiz, E., A. B. Fernández-Salegui, and C. Acedo. 2023. Plant Conservation in the Midst of Energy Transition: Can Regional Governments Rise to the Challenge? Land 12: 2003. https://doi.org/10.3390/land12112003

Within the expanding wind energy projects context, this study explores the intricate relationship between biodiversity conservation and wind power development in the Cantabrian Mountains. By analyzing data from 1107 UTM grids measuring 10 × 10 km, we have identified 378 endangered vascular plant taxa and 36 bryophytes, including 135 that are regional endemics. Wind power complexes pose a significant risk of irreversible impacts on plant conservation zones and their integrity if proper management informed by the best available scientific knowledge is not implemented. This study introduces the concept of very important plant areas (VIPAs) as a crucial tool for identifying priority conservation areas. A total of 60% of the UTM grids were classified in the “high conservation value” category. Among the endangered species within the region, only 11% are afforded protection at the European level and 17% at the national level, leaving a key role for regional governments with heterogeneous lists. Our findings highlight the urgent need for legislation that accommodates updates to protected species lists, ensuring the inclusion of high-risk taxa and legally binding mechanisms at various administrative tiers. The proposed method relies on quantifiable and repeatable criteria, making it adaptable for application in other territories and for broader land use planning purposes.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.