Science Rendue Possible

Tribble, C. M., J. Martínez‐Gómez, C. C. Howard, J. Males, V. Sosa, E. B. Sessa, N. Cellinese, and C. D. Specht. 2021. Get the shovel: morphological and evolutionary complexities of belowground organs in geophytes. American Journal of Botany 108: 372–387. https://doi.org/10.1002/ajb2.1623

Herbaceous plants collectively known as geophytes, which regrow from belowground buds, are distributed around the globe and throughout the land plant tree of life. The geophytic habit is an evolutionarily and ecologically important growth form in plants, permitting novel life history strategies, ena…

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Levy, R., M. Paces, and R. Hufft. 2020. Sampling event dataset for ecological monitoring of riparian restoration effort in Colorado foothills. Biodiversity Data Journal 8. https://doi.org/10.3897/BDJ.8.e51817

The foothills and shortgrass prairie ecosystems of Colorado, United States, have undergone substantial and sustained anthropogenic habitat change over the past two centuries. Riparian systems have been dramatically altered by agriculture, hydrological engineering, urbanisation and the introduction o…

Marconi, L., and L. Armengot. 2020. Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment 287: 106664. https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…

Grattarola, F., G. Botto, I. da Rosa, N. Gobel, E. González, J. González, D. Hernández, et al. 2019. Biodiversidata: An Open-Access Biodiversity Database for Uruguay. Biodiversity Data Journal 7. https://doi.org/10.3897/bdj.7.e36226

The continental and marine territories of Uruguay are characterised by a rich convergence of multiple biogeographic ecoregions of the Neotropics, making this country a peculiar biodiversity spot. However, despite the biological significance of Uruguay for the South American subcontinent, the distrib…

Park, D. S., and O. H. Razafindratsima. 2018. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography 42: 148–161. https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …