Science Rendue Possible
Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332
Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.
Yim, C., E. S. Bellis, V. L. DeLeo, D. Gamba, R. Muscarella, and J. R. Lasky. 2023. Climate biogeography of Arabidopsis thaliana: Linking distribution models and individual variation. Journal of Biogeography. https://doi.org/10.1111/jbi.14737
Aim Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range‐wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity.LocationGlobal.TaxonArabidopsis thaliana (‘Arabidopsis’).MethodsWe fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current and future climates. We confronted model predictions with individual performance measured on 2194 herbarium specimens, and we asked whether predicted suitability was associated with life history and genomic variation measured on ~900 natural accessions.ResultsThe most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate‐associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late‐flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the centre of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well‐predicted by our native‐range model applied to certain regions but not others, suggesting it has colonized novel climates.Main ConclusionsIntegration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
O’Mahony, J., A. Vanmechelen, and P. Holloway. 2023. Quantifying the distribution and potential biotic interactions between deer and flora using species distribution modelling. Annals of GIS: 1–16. https://doi.org/10.1080/19475683.2023.2226196
Invasive species are ranked as one of the leading drivers of global biodiversity loss. To mitigate their impact, we must understand the future risks caused by invasive species, particularly to flora of conservation concern. Here we used species distribution modelling (SDM) to project the current and future (RCP45 and RCP85 2050) distributions of four deer species and 13 plant species of conservation concern for the island of Ireland, quantifying changes in distributions and overlap. Large areas of suitable habitat for the deer species were predicted with high accuracy across all counties, with future climate scenarios identifying an expansion in sika deer distributions and a decrease in muntjac and fallow deer distributions. Red deer declined under the moderate climate change scenario but increased under the worst-case projection. Future projections predicted the (local) extinction of six (out of 13) endangered and vulnerable plant species. An expansion in distributions was observed for four plant species; however, these areas had large overlap with the future predictions of deer, placing further pressures on these plant species. These findings suggest that targeted conservation and management measures are required to alleviate the pressures on ‘at-risk’ plant species due to grazing from native and non-native deer.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.
Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885
Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.
Jacquemyn, H., T. Pankhurst, P. S. Jones, R. Brys, and M. J. Hutchings. 2023. Biological Flora of Britain and Ireland: Liparis loeselii. Journal of Ecology. https://doi.org/10.1111/1365-2745.14086
This account presents information on all aspects of the biology of Liparis loeselii (L.) Rich. (Fen Orchid) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of Britain and Ireland: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation.Liparis loeselii is a small terrestrial orchid that has a circumboreal distribution and is widespread in Europe and North America. Despite its wide distribution, the species is locally rare and has declined considerably in most of its range. In Britain, the species has a disjunct distribution and is now known to occur consistently at only six sites in eastern England and three in south Wales. It is absent from Ireland. Its most characteristic habitats in Britain are inland fens and coastal dune slacks, but outside Britain it can also be found in wet meadows, marshes, forested seep springs, at lake borders or on mats of floating peat.Populations of Liparis loeselii in dune slacks tend to be short‐lived, and can rapidly increase in size or decrease and disappear as environmental conditions change. The species does not tolerate high nutrient concentrations or low pH. It is susceptible to drought, which reduces seed germination, seedling recruitment and adult survival. Heavy predation by rabbits and rodents has been observed under drought conditions.Liparis loeselii reproduces both by sexual reproduction, and by vegetative propagation through the production of pseudobulbs. Although flowers are accessible to insects, entomophilous pollination is unusual, and most sexual reproduction is the result of selfing. Fruits ripen late in the growing season (mid‐October) and the dust‐like seeds are dispersed during winter by wind and water. Germination occurs during the following growing season and is supported by a wide variety of mycorrhizal fungi.Since the late 19th century Liparis loeselii has declined considerably in Britain and elsewhere in Europe, primarily due to habitat destruction and loss, natural succession, and habitat desiccation due to drainage. As a result, the species has been listed as endangered in the Bern Convention and the European Habitat Directive (92/43/EEC), and is the focus of intensive conservation efforts in many countries. Restoration of habitat by mowing, extensive grazing, peat removal, and the creation of new habitat by dune slack formation in dune systems and peat removal in fens may prolong population persistence and promote establishment of new populations.
Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224
The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022
Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).
Tazikeh, S., S. Zendehboudi, S. Ghafoori, A. Lohi, and N. Mahinpey. 2022. Algal bioenergy production and utilization: Technologies, challenges, and prospects. Journal of Environmental Chemical Engineering 10: 107863. https://doi.org/10.1016/j.jece.2022.107863
Increasing demand for energy and also escalating environmental pollution show that industries cannot rely on fossil fuels, and it is necessary to adopt an alternative. In recent decades, algal bioenergy has emerged as a renewable energy source in different industries. However, algal bioenergy production is costly and faces different challenges and unknown aspects that need to be addressed. Experimental and theoretical research works have revealed that the efficiency of algal bioenergy production is influenced by several factors, including algae species, temperature, light, CO2, cultivation method, and available nutrients. Algal bioenergy production on commercial scales in cost-effective ways is the main aim of industries to compete with fossil fuels. Hence, it is vital to have a comprehensive knowledge of the previous findings and attain a suitable pathway for future studies/activities. In the present review paper, the potential of microalgae bioenergy production, influential parameters, previous experimental and theoretical studies, and different methods for microalgae biofuel production from cultivation stage to utilization are reviewed. Moreover, this work discusses the engineering activities and economic analysis of microalgae cultivation to utilization, and also useful suggestions are made for future research works. The outcomes of the present work confirm that innovative engineering methods can overcome scale-up challenging, increase the rate of production, and decrease the cost of algae bioenergy production. Hence, there is no long way to produce cost-effective algae bioenergy on commercial scales.