Science Rendue Possible
Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Ovcharova, N. V., M. M. Silantyeva, A. Vaganov, and A. A. Masanina. 2024. Invasion dynamics of Acer negundo L. in ribbon forests of the Altai Krai: ecological impacts and predictive habitat modeling. Altai State University. https://doi.org/10.5281/zenodo.14437657
This study examines the invasion dynamics of ash-leaved maple (box elder, Acer negundo L.) in the ribbon forests of Altai Krai, Russia, where it has become one of the dominant invasive species over the past thirty years. Originally introduced as an ornamental plant in the early 20th century, A. negundo has rapidly proliferated in lowland, steppe, and forest-steppe regions, significantly impacting local ecosystems. Our research analyzes the ecological and phytocoenotic conditions that facilitate A. negundo's invasion, focusing on its distribution across various ribbon pine forests in the region. Through geobotanical surveys and forest management record analysis, we reveal the species' prevalence in diverse forest types and its effects on biodiversity, tree growth, and community dynamics. Key findings indicate that A. negundo flourishes in disturbed habitats, where it aggressively competes with native flora, suppressing their growth and altering successional pathways. This leads to low-diversity communities increasingly dominated by the invasive species and highlights the exacerbating role of logging and land-use changes. Using predictive modeling techniques, we assessed habitat suitability for A. negundo across Eurasia, identifying temperature as the primary limiting factor for its distribution. The model achieved a high AUC value of 0.97, indicating strong reliability. These findings suggest a significant potential for A. negundo's range expansion throughout Altai Krai, especially in areas with reduced competition from native species. This research underscores the urgent need for effective management strategies to mitigate the effects of A. negundo in Altai Krai and similar regions.
Zhang, L., I. van Riemsdijk, M. Liu, Z. Liao, A. CavéâRadet, J. Bi, S. Wang, et al. 2024. Biogeography of a Global Plant Invader: From the Evolutionary History to Future Distributions. Global Change Biology 30. https://doi.org/10.1111/gcb.17622
Biological invasions pose a global challenge, affecting ecosystems worldwide and human societies. Knowledge of the evolutionary history of invasive species is critical to understanding their current invasion success and projecting their future spread. However, to date, few studies have addressed the evolutionary history and potential future spread of invaders simultaneously. In this study, we explored both evolutionary history and spatiotemporal dynamic patterns of the distribution of Reynoutria japonica, known as one of the world's worst plant invaders. We analysed 265 R. japonica samples from its current geographical ranges across three continents, using seven chloroplast DNA (cpDNA) markers to establish the phylogenetic relationships among extant populations. We combined these with ecological niche modelling to infer historical and more recent migration patterns and predict potential future distribution changes under climate change. Our results indicate that climate fluctuations and sea level changes likely facilitated the expansion of R. japonica from southern Japan to continental East Asia in the Pliocene, followed by a contraction in East Asian populations. In the recent Holocene, human activities have then enabled a linage of this species to spread from Japan to Europe and North America, resulting in three major global clades. Future climate scenarios suggest a northward expansion of R. japonica in Europe and North America, but shrinking habitat in China. Our study, thus, demonstrates the complex influences of historical climate‐driven migrations, human activities and future climate changes on the global distribution of an invasive species.
Yang, M., Y. Qi, X. Xian, N. Yang, L. Xue, C. Zhang, H. Bao, and W. Liu. 2025. Coupling phylogenetic relatedness and distribution patterns provides insights into sandburs invasion risk assessment. Science of The Total Environment 958: 177819. https://doi.org/10.1016/j.scitotenv.2024.177819
Invasive sandburs (Cenchrus spp.), tropical and subtropical plants, are preferred in grasslands and agricultural ecosystems worldwide, causing significant crop production losses and reducing native biodiversity. Integrating phylogenetic relatedness and potentially suitable habitats (PSHs) to identify areas at risk of invasion is critical for prioritizing management efforts and supporting decisions on early warning and surveillance for sandbur invasions. However, despite risk assessments for individual Cenchrus species, the combined analysis of suitable habitats and phylogenetic relationships remains unclear. Therefore, this study aims to assess the invasion risk regions—including PSHs, species richness (SR), and phylogenetic structure—of eight invasive and potentially invasive sandburs in China, to quantify their niche overlap and identify driving factors. Our results showed that the phylogenetic distance of potentially invasive sandburs was closely related to invasive sandburs. Especially, three potentially invasive sandburs, C. ciliaris, C. setigerus, and C. myosuroides, possessed invasion potential resulting from close phylogenetic relatedness and high climatic suitability compared with invasive sandburs. The PSHs for invasive sandburs were distributed in wider regions except northwest China and had higher suitability to different environmental conditions. Potentially invasive sandburs were primarily located in southwestern and southern China driven by precipitation, especially, being inspected in Guangdong, Hainan, and Yunnan on numerous occasions, or potentially introduced in Guangxi, Taiwan, and Fujian for sandburs invasion hotspots. The phylogenetic clustering for eight sandburs occurred in the eastern, center, and southern coastal China, where higher SR in distribution was correlated with invasion hotspots. The SR and phylogenetic relatedness metrics were related to temperature and topographic variables. Totally, the expansion and invasion risk could be increased toward higher latitudes under future global warming. These findings offer novel insights for the prevention and management of sandburs invasions.
Wenk, E., T. Mesaglio, D. Keith, and W. Cornwell. 2024. Curating protected area-level species lists in an era of diverse and dynamic data sources. Ecological Informatics 84: 102921. https://doi.org/10.1016/j.ecoinf.2024.102921
Dynamic yet accurate species lists for protected areas are essential for conservation and biodiversity research. Even when such lists exist, changing taxonomy, ongoing species migrations and invasions, and new discoveries of historically overlooked species mean static lists can become rapidly outdated. Biodiversity databases such as the Global Biodiversity Information Facility, and citizen science platforms such as iNaturalist, offer rapidly accessible, georeferenced data, but their accuracy is rarely tested. Here we compare species lists generated for two of the world's oldest, more famous protected areas – Yosemite National Park in California, United States and Royal National Park in New South Wales, Australia – using both automated data extraction techniques and extensive manual curation steps. We show that automated list creation without manual curation offers inflated measures of species diversity. Lists generated from herbarium vouchers required more curation than lists generated from iNaturalist, with both incorrect coordinates attached to vouchers and long-outdated names inflating voucher-based species lists. In comparison, iNaturalist data had relatively few errors, in part due to continual curation by a large community, including many botanical experts, and the frequent and automatic implementation of taxonomic updates. As such, iNaturalist will become an increasingly accurate supplementary source for automated biodiversity lists over time, but currently offers poor coverage of graminoid species and introduced species relative to showier, native taxa, and relies on continued expert contributions to identifications. At this point, researchers must manually curate lists extracted from herbarium vouchers or static park lists, and integrate these data with records from iNaturalist, to produce the most robust and taxonomically up-to-date species lists for protected areas.
Tulowiecki, S. J., and N. LaDuke. 2024. Models reveal shifting distribution of climatic suitability for pawpaw (Asimina triloba [L.] Dunal) cultivation under future climate change scenarios. Scientia Horticulturae 338: 113837. https://doi.org/10.1016/j.scienta.2024.113837
The pawpaw (Asimina triloba [L.] Dunal) is a deciduous tree notable for its large edible fruit. Native to the eastern US and Canada, it has earned attention as a horticultural commodity and focus of scientific inquiry. However, few studies have modeled its potential future distribution under climate change. This study predicted the current and future potential distribution for pawpaw in North America and globally, with a focus on understanding future climatic suitability for fruit cultivation. This study first modeled suitability via the Maximum Entropy (MaxEnt) method by relating climate predictors with different datasets on pawpaw distribution, including nursery locations growing pawpaw. It also trained a boosted regression tree (BRT) model to estimate where sufficient heat accumulation for fruit ripening would occur. The models were applied to two future times (2041–2060 and 2081–2100), four emissions scenarios (SSP126, SSP245, SSP370, and SSP585), and climate projections from three climate models. Using nursery locations, the MaxEnt model yielded a mean area-under-the-curve statistic of 0.978 (standard deviation = 0.009) using 10-fold cross-validation, indicating strong predictive performance. The model suggested optimal conditions for pawpaw at these values: -4 °C for minimum temperature of coldest month, 26 °C for maximum temperature of warmest month, 88 cm for annual precipitation, and 0 % for precipitation seasonality. Models suggested shifting suitable climate conditions and accompanying increases in heat accumulation for fruit ripening. Northern America, Eastern Europe, and Northern Europe were predicted to have higher and increasing suitability; Western Europe, Southern Europe, and Eastern Asia were predicted to have higher but decreasing suitability. Little uncertainty existed due to collinearity shift or dissimilarity between current and future climate, but more uncertainty existed when predictions were based on differing climate model projections. This study provides insight into the pawpaw's potential response to climate change, and guidance on future locations for cultivation.
Xiao, K., L. Ling, R. Deng, B. Huang, Y. Cao, Q. Wu, H. Ning, and H. Chen. 2024. Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios. Insects 15: 897. https://doi.org/10.3390/insects15110897
Acanthotomicus suncei is a newly discovered bark beetle in China that significantly threatens the American sweetgum Liquidambar styraciflua. In recent years, this pest has spread from its original habitat to many surrounding cities, causing substantial economic and ecological losses. Considering the wide global distribution of its host, Liquidambar styraciflua, this pest is likely to continue to spread and expand. Once the pest colonizes a new climatically suitable area, the consequences could be severe. Therefore, we employed the CLIMEX and Random Forests model to predict the potential suitable distribution of A. suncei globally. The results showed that A. suncei was mainly distributed in Southern China, in South Hokkaido in Japan, Southern USA, the La Plata Plain in South America, southeastern Australia, and the northern Mediterranean; these areas are located in subtropical monsoon, monsoonal humid climates, or Mediterranean climate zones. Seasonal rainfall, especially in winter, is a key environmental factor that affects the suitable distribution of A. suncei. Under future climates, the total suitable area of A. suncei is projected to decrease to a certain extent. However, changes in its original habitat require serious attention. We found that A. suncei exhibited a spreading trend in Southwest, Central, and Northeast China. Suitable areas in some countries in Southeast and South Asia bordering China are also expected to show an increased distribution. The outward spread of this pest via sea transportation cannot be ignored. Hence, quarantine efforts should be concentrated in high-suitability regions determined in this study to protect against the occurrence of hosts that may contain A. suncei, thereby avoiding its long-distance spread. Long-term sentinel surveillance and control measures should be carried out as soon as A. suncei is detected, especially in regions with high suitability. Thus, our findings establish a theoretical foundation for quarantine and control measures targeting A. suncei.
Plášek, V., L. Číhal, F. Müller, M. Pöltl, M. Wierzgoń, and R. Ochyra. 2024. Newly found and rediscovered hornworts (Anthocerotophyta) in Poland: Indicators of climate change impact in Central Europe. PhytoKeys 248: 237–261. https://doi.org/10.3897/phytokeys.248.134729
AbstractIn 2023, field research in south-western Poland led to the noteworthy discovery of two hornworts: Notothylasorbicularis, a species previously unrecorded in this country, and the rediscovery of Anthocerosneesii for the Polish bryoflora. These findings are significant as they suggest a response to climate change, which is facilitating the range expansion of hornworts within Central Europe. Detailed descriptions of the new localities for both species are provided, highlighting the specific environmental conditions and habitats where they were found. Distribution maps for Notothylasorbicularis and Anthocerosneesii in Poland are provided, as well as SEM micrographs of spores. Additionally, a key to the identification of Polish hornwort species is also included. Furthermore, a model projecting the potential future spread of these hornworts within Poland and the broader Central European region is presented. This model considers climatic variables and habitat availability, offering insights into possible range shifts. This study contributes to the growing body of evidence that climate change is a driving factor in the redistribution of bryophytes.
Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3
Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.
Noel, A., D. R. Schlaepfer, B. J. Butterfield, M. C. Swan, J. Norris, K. Hartwig, M. C. Duniway, and J. B. Bradford. 2024. Most Pinyon–Juniper Woodland Species Distributions Are Projected to Shrink Rather Than Shift Under Climate Change. Rangeland Ecology & Management. https://doi.org/10.1016/j.rama.2024.09.002
Pinyon–juniper (PJ) woodlands are among the most widespread ecosystems in rangelands of western North America, supporting diverse wildlife habitat, recreation, grazing, and cultural/spiritual enrichment. Anticipating future distribution shifts under changing climate will be critical to climate adaptation and conservation efforts in these ecosystems. Here, we evaluate drivers of PJ tree species’ distributions and project changes in response to future climate change. We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.