Science Rendue Possible

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Kroonen, G., A. Jakob, A. I. Palmér, P. van Sluis, and A. Wigman. 2022. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages S. Wichmann [ed.],. PLOS ONE 17: e0275744. https://doi.org/10.1371/journal.pone.0275744

Questions on the timing and the center of the Indo-European language dispersal are central to debates on the formation of the European and Asian linguistic landscapes and are deeply intertwined with questions on the archaeology and population history of these continents. Recent palaeogenomic studies support scenarios in which the core Indo-European languages spread with the expansion of Early Bronze Age Yamnaya herders that originally inhabited the East European steppes. Questions on the Yamnaya and Pre-Yamnaya locations of the language community that ultimately gave rise to the Indo-European language family are heavily dependent on linguistic reconstruction of the subsistence of Proto-Indo-European speakers. A central question, therefore, is how important the role of agriculture was among the speakers of this protolanguage. In this study, we perform a qualitative etymological analysis of all previously postulated Proto-Indo-European terminology related to cereal cultivation and cereal processing. On the basis of the evolution of the subsistence strategies of consecutive stages of the protolanguage, we find that one or perhaps two cereal terms can be reconstructed for the basal Indo-European stage, also known as Indo-Anatolian, but that core Indo-European, here also including Tocharian, acquired a more elaborate set of terms. Thus, we linguistically document an important economic shift from a mostly non-agricultural to a mixed agro-pastoral economy between the basal and core Indo-European speech communities. It follows that the early, eastern Yamnaya of the Don-Volga steppe, with its lack of evidence for agricultural practices, does not offer a perfect archaeological proxy for the core Indo-European language community and that this stage of the language family more likely reflects a mixed subsistence as proposed for western Yamnaya groups around or to the west of the Dnieper River.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499. https://doi.org/10.1038/s41477-022-01144-8

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Liang, S., X. Zhang, and R. Wei. 2022. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Molecular Ecology 31: 2679–2697. https://doi.org/10.1111/mec.16420

The formation of spatial genetic structure with the presence of extensive gene flow, an evolutionary force which is generally expected to eliminate population-specific variation and maintain genetic homogeneity, remains poorly understood. Homosporous ferns, which spread by spores through wind and possess long-distance dispersal capacity, provide an ideal system to investigate such a process. Here, using a homoploid fern lineage, the Athyrium sinense complex, we used reduced-representation genomic data to examine spatial genetic structure and explored potential driving forces including geographical distance, environment, climatic history and external dispersal constraints. Our findings showed a clear north-south divergence at the genetic, morphological and ecological levels between both sides of 35°N in East Asia. Fluctuant and heterogeneous climatic condition was demonstrated to play a crucial role during the formation of the divergence. Our results suggested that this lineage was able to migrate southward and colonize new habitat as a result of the Quaternary climatic fluctuation. Furthermore, the present genetic structure is attributed to adaptation to heterogeneous environments, especially temperature difference. In addition to ecological adaptation, we found clues showing that canopy density, wind direction as well as habitat continuity were all likely to constrain the effect of gene flow. These results demonstrated a diversification process without ploidy changes in ferns providing new insights for our present knowledge on ferns’ spatio-temporal evolutionary pattern. In particular, our study highlights the influence of environmental heterogeneity in driving genetic divergence against strong dispersal capacity.

Filartiga, A. L., A. Klimeš, J. Altman, M. P. Nobis, A. Crivellaro, F. Schweingruber, and J. Doležal. 2022. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Annals of Botany 129: 567–582. https://doi.org/10.1093/aob/mcac014

Background and Aims Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is availabl…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Zhang, Y., J. Chen, and H. Sun. 2021. Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere N. Rajakaruna [ed.],. AoB PLANTS 13. https://doi.org/10.1093/aobpla/plab018

Background and Aims A large number of studies have attempted to determine the mechanisms driving plant diversity and distribution on a global scale, but the diverse and endemic alpine herbs found in harsh environments, showing adaptive evolution, require more studies. Methods Here, we selected 466 s…