Science Rendue Possible

Mezghani, N., Khoury, C. K., Carver, D., Achicanoy, H. A., Simon, P., Flores, F. M., & Spooner, D. (2019). Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 0(0), 0. doi:10.2135/cropsci2019.05.0333 https://doi.org/10.2135/cropsci2019.05.0333

Crop wild relatives, the wild progenitors and closely related cousins of cultivated plant species, are sources of valuable genetic resources for crop improvement. Persisting gaps in knowledge of taxonomy, distributions, and characterization for traits of interest constrain their expanded use in plan…

Marconi, L., & Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment, 287, 106664. doi:10.1016/j.agee.2019.106664 https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…

Fletcher, T. L., Warden, L., Sinninghe Damsté, J. S., Brown, K. J., Rybczynski, N., Gosse, J. C., & Ballantyne, A. P. (2019). Evidence for fire in the Pliocene Arctic in response to amplified temperature. Climate of the Past, 15(3), 1063–1081. doi:10.5194/cp-15-1063-2019 https://doi.org/10.5194/cp-15-1063-2019

The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intr…

Grattarola, F., Botto, G., da Rosa, I., Gobel, N., González, E., González, J., … Pincheira-Donoso, D. (2019). Biodiversidata: An Open-Access Biodiversity Database for Uruguay. Biodiversity Data Journal, 7. doi:10.3897/bdj.7.e36226 https://doi.org/10.3897/bdj.7.e36226

The continental and marine territories of Uruguay are characterised by a rich convergence of multiple biogeographic ecoregions of the Neotropics, making this country a peculiar biodiversity spot. However, despite the biological significance of Uruguay for the South American subcontinent, the distrib…

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences, 116(22), 10874–10882. doi:10.1073/pnas.1817999116 https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…

Rotllan-Puig, X., & Traveset, A. (2019). Determining the Minimal Background Area for Species Distribution Models: MinBAR Package. doi:10.1101/571182 https://doi.org/10.1101/571182

One of the crucial choices when modelling species distributions using pseudo-absences approaches is the delineation of the background area to fit the model. We hypothesise that there is a minimum background area around the centre of the species distribution that characterizes well enough the range o…

Karger, D. N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., König, C., & Zimmermann, N. E. (2019). Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography. doi:10.1111/geb.12897 https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

Sheppard, C. S., & Schurr, F. M. (2018). Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. doi:10.1111/geb.12844 https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2018). Spatial sampling bias in the Neotoma paleoecological archives affects species paleo-distribution models. Quaternary Science Reviews, 198, 115–125. doi:10.1016/j.quascirev.2018.08.015 https://doi.org/10.1016/j.quascirev.2018.08.015

The ability to infer paleo-distributions with limited knowledge of absence makes species distribution modeling (SDM) a useful tool for exploring paleobiogeographic questions. Spatial sampling bias is a known issue when modeling extant species. Here we quantify the spatial sampling bias in a North Am…

Joffard, N., Massol, F., Grenié, M., Montgelard, C., & Schatz, B. (2018). Effect of pollination strategy, phylogeny and distribution on pollination niches of Euro‐Mediterranean orchids. Journal of Ecology, 107(1), 478–490. doi:10.1111/1365-2745.13013 https://doi.org/10.1111/1365-2745.13013

1.Pollination niches are important components of ecological niches and have played a major role in the diversification of Angiosperms. In this study, we focused on Euro‐Mediterranean orchids, which use diverse pollination strategies and interact with various functional groups of insects. In these or…