Science Rendue Possible
V. Tytar, I. Kozynenko, and M. Navakatikyan. 2024. Modeling the distribution of the proboscis monkey (Nasalis larvatus) in Sabah (Borneo) based on remotely sensed high-resolution global cloud dynamics. Theriologia Ukrainica 2024. https://doi.org/10.53452/tu2711
Proboscis monkeys, Nasalis larvatus (Wurmb, 1787), are indigenous to the island of Borneo and are considered one of its most emblematic species. Today the conservation status of this primate is classified as Endangered on the the IUCN Red List and listed under Appendix I of CITES, prohibiting all international commercial trade. In the Malaysian state of Sabah, the species is listed as totally protected and cannot be hunted. Continuing studies suggest that the number of proboscis monkeys has been decreasing in recent years. These studies have identified various factors contributing to this decline and its potential consequences. In order to carry out a thorough assessment of the conservation status of the species it is essential to have a good understanding of the animal`s ecology and habitat requirements and to use research-based approaches. One of such are species distribution models (SDMs) which in recent decades have become widely used tools in ecology by relating species occurrences to environmental data so as to gain ecological insights. In this work we specifically evaluated the effect of environmental parameters such as cloud cover to predict the potential distribution of the proboscis monkey in Sabah. Cloud cover, a seemingly simple atmospheric phenomenon, exerts a profound influence on a wide range of ecological biological processes, yet the assessment of its importance has remained remarkably limited. For modeling purposes the ‘flexsdm’ R (v. 3.3.3) modeling package was employed for testing out the Maximum Entropy (Maxent) algorithm, one of the most widely used SDM modeling methods. Model evaluation gave satisfactory results and the resulting model found a high level of suitability for proboscis monkeys in nearshore areas. A concerning discovery is that perhaps less than 13% of Sabah's area is suitable for proboscis monkey habitats, raising questions about their long-term viability. Cloud cover, particularly average annual cloudiness, is a key environmental factor influencing the distribution of proboscis monkeys in Sabah. The conversion of Borneo's forests to oil palm plantations can negatively impact cloud properties, potentially threatening the monkeys' habitat.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223. https://doi.org/10.3390/d16040223
Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.
Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034
Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.
Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10. https://doi.org/10.1098/rsos.230725
Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.
Thongsangtum, N., J. Huang, S.-F. Li, Y. Thasod, and T. Su. 2023. Calophyllum (Calophyllaceae) from late Oligocene–Early Miocene of Li Basin, northern Thailand and its biogeographic and paleoclimatic implications. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.09.002
Fossils from tropical Asia, which are far from fully investigated, are important for understanding the evolution of plant diversity and the associated surrounding environment there. In this study, we report, as the first record in Thailand, the well-preserved leaf fossils of Calophyllum Linnaeus (Calophyllaceae) from the upper Oligocene–Lower Miocene lacustrine deposits in Li Basin, northern Thailand. The fossils were identified through detailed comparison with leaves of extant and fossil species. These leaf fossils are assigned to Calophyllum based on several key leaf characteristics such as oblanceolate or oblong in shape and parallel secondary veins, nearly perpendicular to the midvein, as well as secondary veins alternate, closely placed, craspedodromous, parallel, dense, and distinct on surface, forming marginal veins. Based on detailed morphological comparison, these fossil leaves are assigned to C. suraikholaensis Awasthi and Prasad, 1990 and Calophyllum sp. The discovery of Calophyllum indicates a montane subtropical to tropical climate in northern Thailand during the Oligocene–Miocene. Together with previous fossil records, these results suggest that this genus probably originated in India during the Paleogene, and spread from India to Indochina during the Neogene, leading to its modern distribution, which currently prefers tropical climates.
Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003
Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Hill, A., M. F. T. Jiménez, N. Chazot, C. Cássia‐Silva, S. Faurby, L. Herrera‐Alsina, and C. D. Bacon. 2023. Apparent effect of range size and fruit colour on palm diversification may be spurious. Journal of Biogeography. https://doi.org/10.1111/jbi.14683
Aim Fruit selection by animal dispersers with different mobility directly impacts plant geographical range size, which, in turn, may impact plant diversification. Here, we examine the interaction between fruit colour, range size and diversification rate in palms by testing two hypotheses: (1) species with fruit colours attractive to birds have larger range sizes due to high dispersal ability and (2) disperser mobility affects whether small or large range size has higher diversification, and intermediate range size is expected to lead to the highest diversification rate regardless of disperser. Location Global. Time Period Contemporary (or present). Major Taxa Studied Palms (Arecaceae). Methods Palm species were grouped based on likely animal disperser group for given fruit colours. Range sizes were estimated by constructing alpha convex hull polygons from distribution data. We examined disperser group, range size or an interaction of both as possible drivers of change in diversification rate over time in a likelihood dynamic model (Several Examined State-dependent Speciation and Extinction [SecSSE]). Models were fitted, rate estimates were retrieved and likelihoods were compared to those of appropriate null models. Results Species with fruit colours associated with mammal dispersal had larger ranges than those with colours associated with bird dispersal. The best fitting SecSSE models indicated that the examined traits were not the primary driver of the heterogeneity in diversification rates in the model. Extinction rate complexity had a marked impact on model performance and on diversification rates. Main Conclusions Two traits related to dispersal mobility, range size and fruit colour, were not identified as the main drivers of diversification in palms. Increased model extinction rate complexity led to better performing models, which indicates that net diversification should be estimated rather than speciation alone. However, increased complexity may lead to incorrect SecSSE model conclusions without careful consideration. Finally, we find palms with more mobile dispersers do not have larger range sizes, meaning other factors are more important determinants of range size.