Science Rendue Possible

Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Wang, C.-J., and J.-Z. Wan. 2021. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation 19: 475–486. https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Rhodes, A. C., R. M. Plowes, J. A. Goolsby, J. F. Gaskin, B. Musyoka, P.-A. Calatayud, M. Cristofaro, et al. 2021. The dilemma of Guinea grass (Megathyrsus maximus): a valued pasture grass and a highly invasive species. Biological Invasions 23: 3653–3669. https://doi.org/10.1007/s10530-021-02607-3

On a global scale, invasive grasses threaten biodiversity and ecosystem function. Nevertheless, the importation of forage grasses is a significant economic force driven by globalization. Pastureland and rangeland are of critical economic and ecological importance, but novel grass species may lead to…

Allen, K. E., W. P. Tapondjou, B. Freeman, J. C. Cooper, R. M. Brown, and A. T. Peterson. 2021. Modelling potential Pleistocene habitat corridors between Afromontane forest regions. Biodiversity and Conservation 30: 2361–2375. https://doi.org/10.1007/s10531-021-02198-4

The unusually high floral and faunal similarity between the different regions of the Afromontane archipelago has been noted by biogeographers since the late 1800s. A possible explanation for this similarity is the spread of montane habitat into the intervening lowlands during the glacial periods of …

Bontrager, M., T. Usui, J. A. Lee‐Yaw, D. N. Anstett, H. A. Branch, A. L. Hargreaves, C. D. Muir, and A. L. Angert. 2021. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75: 1316–1333. https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Mazijk, R., M. D. Cramer, and G. A. Verboom. 2021. Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography 48: 1875–1888. https://doi.org/10.1111/jbi.14118

Aim: Given the importance of environmental heterogeneity as a driver of species richness through its effects on species diversification and coexistence, we asked whether the dramatic difference in species richness per unit area between two similar Mediterranean‐type biodiversity hotspots is explaine…

Iannella, M., P. D’Alessandro, W. De Simone, and M. Biondi. 2021. Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects 12: 299. https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Saldaña‐López, A., M. Vilà, F. Lloret, J. Manuel Herrera, and P. González‐Moreno. 2021. Assembly of species’ climatic niches of coastal communities does not shift after invasion Z. Botta‐Dukát [ed.],. Journal of Vegetation Science 32. https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Pérez‐Navarro, M. Á., J. M. Serra‐Diaz, J. Svenning, M. Á. Esteve‐Selma, J. Hernández‐Bastida, and F. Lloret. 2021. Extreme drought reduces climatic disequilibrium in dryland plant communities. Oikos 130: 680–690. https://doi.org/10.1111/oik.07882

High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, h…

Allstädt, F. J., A. Koutsodendris, E. Appel, W. Rösler, T. Reichgelt, S. Kaboth-Bahr, A. A. Prokopenko, and J. Pross. 2021. Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments 101: 177–195. https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…