Science Rendue Possible

Ivey, C. T., N. M. Habecker, J. P. Bergmann, J. Ewald, M. E. Frayer, and J. M. Coughlan. 2023. Weak reproductive isolation and extensive gene flow between Mimulus glaucescens and M. guttatus in northern California. Evolution.

Abstract Barriers to reproduction are often how progress in speciation is measured. Nonetheless, an unresolved question concerns the extent to which reproductive barriers diminish gene flow between incipient species. The Sierra Nevada foothill endemic Mimulus glaucescens and the widespread M. guttatus are considered distinct species based on striking differences in vegetative morphology, but barriers to reproduction have not been previously identified, nor has gene flow between species been characterized. Here, we examined 15 potential reproductive barriers within a Northern California area of broad sympatry. Most barriers, with the exception of ecogeographic isolation, were weak or absent, and total isolation for each species was incomplete. Population genomic analyses of range-wide and broadly sympatric accessions revealed extensive gene flow between these taxa, particularly in sympatry. Despite widespread introgression, Mimulus glaucescens, emerged as monophyletic and largely comprised a single ancestry that was found at intermediate frequency within M. guttatus. This result, along with observed ecological and phenotypic differentiation, suggests that natural selection may contribute to the maintenance of distinct phenotypic forms in the earliest stages of speciation. Integrating estimates of barrier strength with direct estimates of gene flow can strengthen a more nuanced interpretation of the process of speciation in natural communities.

Zhao, Y., G. A. O’Neill, and T. Wang. 2023. Predicting fundamental climate niches of forest trees based on species occurrence data. Ecological Indicators 148: 110072.

Species climate niche models (CNMs) have been widely used for assessing climate change impact, developing conservation strategies and guiding assisted migration for adaptation to future climates. However, the CNMs built based on species occurrence data only reflect the species’ realized niche, which can overestimate the potential loss of suitable habitat of existing forests and underestimate the potential of assisted migration to mitigate climate change. In this study, we explored building a fundamental climate niche model using widely available species occurrence data with two important forest tree species, lodgepole pine (Pinus contorta Dougl. ex Loud.) and Douglas-fir (Pseudotsuga menziesii Franco.), which were introduced to many countries worldwide. We first compared and optimized three individual modeling techniques and their ensemble by adjusting the ratio of presence to absence (p/a) observations using an innovative approach to predict the realized climate niche of the two species. We then extended the realized climate niches to their fundamental niches by determining a new cut-off threshold based on species occurrence data beyond the native distributions. We found that the ensemble model comprising Random Forest and Maxent had the best performance and identified a common cut-off threshold of 0.3 for predicting the fundamental climate niches of the two species, which is likely applicable to other species. We then predicted the fundamental climate niches of the two species under current and future climate conditions. Our study demonstrated a novel approach for predicting species’ fundamental climate niche with high accuracy using only species occurrence data, including both presence and absence data points. It provided a new tool for assessing climate change impact on the future loss of existing forests and implementing assisted migration for better adapting to future climates.

Emiroğlu, Ö., S. Aksu, S. Başkurt, J. R. Britton, and A. S. Tarkan. 2023. Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions.

Freshwater ecosystems are highly vulnerable to the detrimental impacts of both biological invasions and climate change. Piscivorous alien fishes drive populations of small-bodied native fishes to extinction and warming is already driving extreme temperature events in lakes and rivers globally. Here, we use Ecological Niche Modelling (ENM) to predict how climate change will alter the geographical space of six alien fishes and five native fish genera (which include multiple endemic species) in Turkey, a hotspot of freshwater fish diversity. The models predicted that the geographical space of the alien fishes already present in Turkey would generally increase (including pikeperch Sander lucioperca and perch Perca fluviatilis ), but with the most substantial increases in largemouth bass Micropterus salmoides , a species not yet present in Turkey but that is invasive in countries nearby and is highly popular for sport angling. For the native fish genera, general predictions were for reduced geographical space, especially in the south and east of the country, suggesting the endemic species will become increasingly imperilled in future. Their populations will also be at increasing risk of deleterious impacts from the alien piscivores, as the predictions were also for increasing overlaps in the geographical space of both the alien fishes and native fish genera. These predictions suggest that the conservation of these endemic species need to consider measures on preventing both the introduction of alien species (e.g. largemouth bass) and the further dispersal of extant alien species (e.g. pikeperch), as well as habitat interventions that will limit the effects of climate change on their populations. These results also indicate that the combination of climate change and alien invasions could have substantial impacts on—and similar—hotspots of freshwater diversity.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Wilson Brown, M. K., and E. B. Josephs. 2023. Evaluating niche changes during invasion with seasonal models in Capsella bursa‐pastoris. American Journal of Botany.

Premise Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models Methods In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. Key Results We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models are able to predict North American summer occurrences very well. Conclusions The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.

Hernández, S., A. G. García, F. Arenas, M. P. Escribano, A. Jueterbock, O. De Clerck, C. A. Maggs, et al. 2023. Range‐edge populations of seaweeds show niche unfilling and poor adaptation to increased temperatures. Journal of Biogeography.

(no abstract available)

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32.

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography.

Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.

Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology.

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.

Ecke, F., B. A. Han, B. Hörnfeldt, H. Khalil, M. Magnusson, N. J. Singh, and R. S. Ostfeld. 2022. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications 13.

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world. Many rodent species are known as hosts of zoonotic pathogens, but the ecological conditions that trigger spillover are not well-understood. Here, the authors show that population fluctuations and association with human-dominated habitats explain the zoonotic reservoir status of rodents globally.