Science Rendue Possible

Perktaş, U., and C. Elverici. 2020. Climate-Driven Range Shifts of the Sharp-Tailed Grouse Tympanuchus phasianellus. Acta Ornithologica 54: 213. https://doi.org/10.3161/00016454ao2019.54.2.007

In this study, we tested whether the Sharp-tailed Grouse Tympanuchus phasianellus experienced rapid demographic expansion and shifts in its distribution from the Last Glacial Maximum to the present and to the future. For this, we integrated two different approaches, phylogeography and ecological niche modeling, to understand the historical demography and the future of the Sharp-tailed Grouse under climate change scenarios. To this end, we re-analyzed two published mitochondrial DNA datasets to provide a comprehensive DNA characterization of populations across the range of this species. We used ecological niche models in tandem with landscape genetics to estimate the species current and historical geographic range, and to summarize effective connectivity among populations of the species at present. We found low genetic variation across the Sharp-tailed Grouse's distributions with almost no differentiation among subspecies. The haplotype network was consistent with star-shape topologies and showed no evident phylogeographic structure with the typical signature of recent demographic expansion. Taken together with the ecological niche modeling results, study outcomes supported the ‘expansion-contraction' model of Pleistocene biogeography. A unique result of this study was an apparently complete range shift of this species between the Last Glacial Maximum and the present, and a signature of cryptic refugium located in Alaskan territory in North America. The usual reason for lack of phylogeographic structure is broad dispersal, rapid expansion, and panmixia. However, in view of our novel geographic insights, a simpler explanation may be very recent establishment of the species’ range. The future predictions confirmed that the Sharp-tailed Grouse continues climate-driven range shifts in 2050 and 2070.

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Cardador, L., and T. M. Blackburn. 2020. A global assessment of human influence on niche shifts and risk predictions of bird invasions B. McGill [ed.],. Global Ecology and Biogeography 29: 1956–1966. https://doi.org/10.1111/geb.13166

Aim: Estimating the strength of niche conservatism is key for predictions of invasion risk. Most studies consider only the climatic niche, but other factors, such as human disturbance, also shape niches. Whether occupation of human habitats in the alien range depends on the native tolerances of spec…

Hastings, R. A., L. A. Rutterford, J. J. Freer, R. A. Collins, S. D. Simpson, and M. J. Genner. 2020. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology 30: 1572-1577.e2. https://doi.org/10.1016/j.cub.2020.02.043

Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at…

Rotenberry, J. T., and P. Balasubramaniam. 2020. Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography 43: 897–913. https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Prieto-Torres, D. A., A. Lira-Noriega, and A. G. Navarro-Sigüenza. 2020. Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation 18: 19–30. https://doi.org/10.1016/j.pecon.2020.01.002

We assessed the effects of global climate change as a driver of spatio-temporal biodiversity patterns in bird assemblages associated to Neotropical seasonally dry forests (NSDF). For this, we estimated the geographic distribution of 719 bird species under current and future climate (2050 and 2070) p…

Perktaş, U., and C. Elverici. 2020. Climate-Driven Range Shifts of the Sharp-Tailed Grouse Tympanuchus phasianellus. Acta Ornithologica 54: 213. https://doi.org/10.3161/00016454AO2019.54.2.007

In this study, we tested whether the Sharp-tailed Grouse Tympanuchus phasianellus experienced rapid demographic expansion and shifts in its distribution from the Last Glacial Maximum to the present and to the future. For this, we integrated two different approaches, phylogeography and ecological nic…

Zink, R. M., S. Botero-Cañola, H. Martinez, and K. M. Herzberg. 2020. Niche modeling reveals life history shifts in birds at La Brea over the last twenty millennia S. Lötters [ed.],. PLOS ONE 15: e0227361. https://doi.org/10.1371/journal.pone.0227361

A species presence at a particular site can change over time, resulting in temporally dynamic species pools. Ecological niche models provide estimates of species presence at different time intervals. The avifauna of La Brea includes approximately 120 species dating to approximately 15,000 years ago.…

Menegotto, A., T. F. Rangel, J. Schrader, P. Weigelt, and H. Kreft. 2019. A global test of the subsidized island biogeography hypothesis A. M. C. dos Santos [ed.],. Global Ecology and Biogeography 29: 320–330. https://doi.org/10.1111/geb.13032

Aim: The decreasing capacity of area to predict species richness on small islands (the small‐island effect; SIE) seems to be one of the few exceptions of the species–area relationship. While most studies have focused on how to detect the SIE, the underlying ecological factors determining this patter…

Liu, X., T. M. Blackburn, T. Song, X. Li, C. Huang, and Y. Li. 2019. Risks of Biological Invasion on the Belt and Road. Current Biology 29: 499-505.e4. https://doi.org/10.1016/j.cub.2018.12.036

China’s Belt and Road Initiative (BRI) is an unprecedented global development program that involves nearly half of the world’s countries [1]. It not only will have economic and political influences, but also may generate multiple environmental challenges and is a focus of considerable academic and p…