Science Rendue Possible

Luza, A. L., A. V. Rodrigues, L. Mamalis, and V. Zulian. 2023. Spatial distribution of the greater rhea, Rhea americana (Linnaeus, 1758), in Rio Grande do Sul, southern Brazil: citizen-science data, probabilistic mapping, and comparison with expert knowledge. Ornithology Research. https://doi.org/10.1007/s43388-023-00143-3

The popularization of citizen-science platforms has increased the amount of data available in a fine spatial and temporal resolution, which can be used to fill distribution knowledge gaps through probabilistic maps. In this study, we gathered expert-based information and used species distribution models to produce two independent maps of the greater rhea ( Rhea americana , Rheiformes, Rheidae) distribution in the state of Rio Grande do Sul, Brazil. We integrated municipality level detection/non-detection data from five citizen-science datasets into a Bayesian site occupancy model, accounting for false negatives, sampling effort, habitat covariates, and spatial autocorrelation. We addressed whether habitat (grassland and crop field cover, number of rural properties) and spatial autocorrelation explains the realized occurrence of the species and compared model-based and expert-based occurrence maps. The mean estimated percentage of occupied municipalities was 48% (239 out of 497 municipalities), whereas experts declared 21% of the municipalities (103) as occupied by the species. While both mapping approaches showed greater rhea presence in most municipalities of the Pampa biome, they disagreed in the majority of the municipalities in the Atlantic Forest, where more fieldwork must be undertaken. The greater rhea distribution was exclusively explained by the spatial autocorrelation component, suggesting that the species expanded its distribution towards the north of the state, reaching the Atlantic Forest, following deforestation and agriculture expansion.

Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100

Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Grattarola, F., G. Botto, I. da Rosa, N. Gobel, E. González, J. González, D. Hernández, et al. 2019. Biodiversidata: An Open-Access Biodiversity Database for Uruguay. Biodiversity Data Journal 7. https://doi.org/10.3897/bdj.7.e36226

The continental and marine territories of Uruguay are characterised by a rich convergence of multiple biogeographic ecoregions of the Neotropics, making this country a peculiar biodiversity spot. However, despite the biological significance of Uruguay for the South American subcontinent, the distrib…

Scharff, N., J. A. Coddington, T. A. Blackledge, I. Agnarsson, V. W. Framenau, T. Szűts, C. Y. Hayashi, and D. Dimitrov. 2019. Phylogeny of the orb‐weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 36: 1–21. https://doi.org/10.1111/cla.12382

We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typ…

Piel, W. H. 2018. The global latitudinal diversity gradient pattern in spiders. Journal of Biogeography 45: 1896–1904. https://doi.org/10.1111/jbi.13387

Aim: The aim of this study was to test the hypothesis that the global latitudinal diversity gradient pattern in spiders is pear‐shaped, with maximum species diversity shifted south of the Equator, rather than egg‐shaped, centred on the equator, this study infers the gradient using two large datasets…