Science Rendue Possible

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533

Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.

Putra, A. R., K. A. Hodgins, and A. Fournier‐Level. 2023. Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling. Evolutionary Applications. https://doi.org/10.1111/eva.13632

The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Wang, C., Z. Yap, P. Wan, K. Chen, R. A. Folk, D. Z. Damrel, W. Barger, et al. 2023. Molecular phylogeography and historical demography of a widespread herbaceous species from eastern North America, Podophyllum peltatum. American Journal of Botany 110. https://doi.org/10.1002/ajb2.16254

Premise Glacial/interglacial cycles and topographic complexity are both considered to have shaped today's diverse phylogeographic patterns of taxa from unglaciated eastern North America (ENA). However, few studies have focused on the phylogeography and population dynamics of wide‐ranging ENA herbaceous species occurring in forest understory habitat. We examined the phylogeographic pattern and evolutionary history of Podophyllum peltatum L., a widely distributed herb inhabiting deciduous forests of ENA.MethodsUsing chloroplast DNA (cpDNA) sequences and nuclear microsatellite loci, we investigated the population structure and genetic diversity of the species. Molecular dating, demographic history analyses, and ecological niche modeling were also performed to illustrate the phylogeographic patterns.ResultsOur cpDNA results identified three main groups that are largely congruent with boundaries along the Appalachian Mountains and the Mississippi River, two major geographic barriers in ENA. Populations located to the east of the Appalachians and along the central Appalachians exhibited relatively higher levels of genetic diversity. Extant lineages may have diverged during the late Miocene, and range expansions of different groups may have happened during the Pleistocene glacial/interglacial cycles.ConclusionsOur findings indicate that geographic barriers may have started to facilitate the population divergence in P. peltatum before the Pleistocene. Persistence in multiple refugia, including areas around the central Appalachians during the Quaternary glacial period, and subsequent expansions under hospitable climatic condition, especially westward expansion, are likely responsible for the species’ contemporary genetic structure and phylogeographic pattern.

Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022

Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Petitpierre, B., C. Arnold, L. N. Phelps, and A. Guisan. 2023. A tale of three vines: current and future threats to wild Eurasian grapevine by vineyards and invasive rootstocks. Diversity and Distributions. https://doi.org/10.1111/ddi.13780

AbstractAimEurasian grapevine (Vitis vinifera), one of the most important fruit crops worldwide, diverged from its wild and currently endangered relative (V. vinifera ssp. sylvestris) about 11,000 years ago. In the 19th century, detrimental phylloxera and disease outbreaks in Europe forced grapevine cultivation to use American Vitis species as rootstocks, which have now become naturalized in Europe and are starting to colonize similar habitats to the wild grapevine. Accordingly, wild grapevine now faces two additional threats: the expansion of vineyards and invasive rootstocks. Furthermore, climate change is expected to have significant impacts on the distribution of all grapevines in Europe. In this study, we quantified the distributional and bioclimatic overlap between grapewine's wild relative and the taxa associated with viticulture, under current and future climate.LocationEurope, North America.MethodsThe distributions of wild Eurasian grapevine, cultivated Eurasian grapevine and five American grapevine species used in rootstock breeding programs were linked to climate variables to model their bioclimatic niches. These ecological niche models were used to quantify the spatial and bioclimatic overlap between these seven Vitis taxa in Europe.ResultsNiche and spatial overlap is high between the wild, cultivated and rootstock grapevines, suggesting that existing conflicts between vineyards and wild grapevine conservation may be further complicated by naturalized rootstocks outcompeting the wild grapevine, especially under future scenarios of climate change. In the hottest scenario, only 76.1% of the current distribution of the Eurasian grapevine remains in suitable area.Main ConclusionsAs wild grapevine may ultimately provide a valuable gene pool for adapting viticulture to a changing world, these findings demonstrate the need for improved management of the wild grapevine and its natural habitat, to counteract the harmful effects of global change on the wild relatives of viticulture.

Ambrosia trifida L. (Asteraceae) – североамериканское однолетнее растение, включенное в перечень карантинных объектов в Европе, в том числе в Российской Федерации и сопредельных странах. Об- суждаются результаты исследований 2017–2021 гг. по выявлению современного распространения и особенностей натурализации этого вида на европейской части России. Центрами массовой натура- лизации А. trifida на исследуемой территории являются Заволжье (Самарская область, юг Татарста- на), Предуралье (Оренбургская область, Башкортостан), Предволжье (запад Саратовской области), Хоперско-Бузулукская равнина (северо-запад Волгоградской области), юго-запад Окско-Донского плоскоместья и Калачская возвышенность (центр и юг Воронежской области). Анклавы в виде на- турализовавшихся популяций отмечены в Брянской и Владимирской областях, а также в городах Казань и Уфа. В дальнейшем можно ожидать распространение A. trifida на большой части европей- ской территории России.

Yim, C., E. S. Bellis, V. L. DeLeo, D. Gamba, R. Muscarella, and J. R. Lasky. 2023. Climate biogeography of Arabidopsis thaliana: Linking distribution models and individual variation. Journal of Biogeography. https://doi.org/10.1111/jbi.14737

Aim Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range‐wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity.LocationGlobal.TaxonArabidopsis thaliana (‘Arabidopsis’).MethodsWe fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current and future climates. We confronted model predictions with individual performance measured on 2194 herbarium specimens, and we asked whether predicted suitability was associated with life history and genomic variation measured on ~900 natural accessions.ResultsThe most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate‐associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late‐flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the centre of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well‐predicted by our native‐range model applied to certain regions but not others, suggesting it has colonized novel climates.Main ConclusionsIntegration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.