Science Rendue Possible

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

Wei, Z., D. Jiao, C. A. Wehenkel, X. Wei, and X. Wang. 2024. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.13760

Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth‐largest conifer genus, is a keystone component of the boreal and temperate dark‐coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high‐latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.

Reichgelt, T. 2024. Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16364

Premise Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.MethodsThe occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.ResultsThree species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.ConclusionsVertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.

Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614

The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.

López-Pérez, J. D., S. Zamudio, G. Munguía-Lino, and A. Rodríguez. 2024. Una especie endémica nueva y distribución de la riqueza de especies del género <i>Pinguicula</i> (Lentibulariaceae) en la Faja Volcánica Trans-Mexicana, México. Botanical Sciences 102: 995–1008. https://doi.org/10.17129/botsci.3485

Background: The genus Pinguicula harbors 110 species, of which 53 are distributed in Mexico. The formation of the Mexican mountains has favored the Pinguicula diversification. Pinguicula specimens collected in the State of México, along the Trans-Mexican Volcanic Belt (TMVB) do not correspond with any known species. Questions: Do the collected specimens belong to a new species? What is its conservation status? How many Pinguicula species are there along the TMVB and how do they differentiate? How is the Pinguicula species richness distributed? Studied species: Pinguicula. Study site and dates: TMVB, 2005-2023. Methods: Based on herbarium specimens and recently collected material, a morphological analysis and description were made. Conservation status was assessed following IUCN Red List Categories and Criteria. Herbarium specimens and digital records of Pinguicula from the TMVB were examined to generate a list and key. We analyzed the richness distribution of Pinguicula by states, vegetation types, elevation ranges, and grid cells. Results: Pinguicula tlahuica is proposed as a new species. It is distinguished by the linear-spatulate summer leaves. The new species falls into the Endangered (EN) category. Along the TMVB, 16 species of Pinguicula are distributed. The State of México, Hidalgo and Michoacán, and the pine-oak forest were the richest. Pinguicula appeared between 759-3,427 m asl. The grid cell analyses revealed different areas with high richness. Conclusions: Along the TMVB, the Pinguicula species richness centered on the Eastern and Western sectors. Pinguicula crassifolia, P. michoacana, P. tlahuica, and P. zamudioana are endemic to the TMVB.

Cortese, M. R., and A. L. Freestone. 2024. When species don’t move together: Non-concurrent range shifts in Eastern Pacific kelp forest communities G. M. Martins [ed.],. PLOS ONE 19: e0303536. https://doi.org/10.1371/journal.pone.0303536

Species range shifts due to changing ocean conditions are occurring around the world. As species move, they build new interaction networks as they shift from or into new ecological communities. Typically, species ranges are modeled individually, but biotic interactions have been shown to be important to creating more realistic modeling outputs for species. To understand the importance of consumer interactions in Eastern Pacific kelp forest species distributions, we used a Maxent framework to model a key foundation species, giant kelp (Macrocystis pyrifera), and a dominant herbivore, purple sea urchins (Strongylocentrotus purpuratus). With neither species having previously been modeled in the Eastern Pacific, we found evidence for M. pyrifera expansion in the northern section of its range, with no projected contraction at the southern range edge. Despite its known co-occurrence with M. pyrifera, models of S. purpuratus showed a non-concurrent southern range contraction and a co-occurring northern range expansion. While the co-occurring shifts may lead to increased spatial competition for suitable substrate, this non-concurrent contraction could result in community wide impacts such as herbivore release, tropicalization, or ecosystem restructuring.

Zhao, Y., G. A. O’Neill, N. C. Coops, and T. Wang. 2024. Predicting the site productivity of forest tree species using climate niche models. Forest Ecology and Management 562: 121936. https://doi.org/10.1016/j.foreco.2024.121936

Species occurrence-based climate niche models (CNMs) serve as valuable tools for predicting the future ranges of species’ suitable habitats, aiding the development of climate change adaptation strategies. However, these models do not address an essential aspect - productivity, which holds economic significance for timber production and ecological importance for carbon sequestration and ecosystem services. In this study, we investigated the potential to extend the CNMs to predict species productivity under various climate conditions. Lodgepole pine (Pinus contorta Dougl. ex Loud.) and Douglas-fir (Pseudotsuga menziesii Franco.) were selected as our model species due to their comprehensive range-wide occurrence data and measurement of site productivity. To achieve this, we compared and optimized the performance of four individual modeling algorithms (Random Forest (RF), Maxent, Generalized Boosted Models (GBM), and Generalized Additive Model (GAM)) in reflecting site productivity by evaluating the effect of spatial filtering, and the ratio of presence to absence (p/a ratio) observations. Additionally, we applied a binning process to capture the overarching trend of climatic effects while minimizing the impact of other factors. We observed consistency in optimal performance across both species when using the unfiltered data and a 1:1.5 p/a ratio, which could potentially be extended to other species. Among the modeling algorithms explored, we selected the ensemble model combining RF and Maxent as the final model to predict the range-wide site productivity for both species. The predicted range-wide site productivity was validated with an independent dataset for each species and yielded promising results (R2 above 0.7), affirming our model’s credibility. Our model introduced an innovative approach for predicting species productivity with high accuracy using only species occurrence data, and significantly advanced the application of CNMs. It provided crucial tools and insights for evaluating climate change's impact on productivity and holds a better potential for informed forest management and conservation decisions.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .

Wang, Y., J. Wang, T. A. Garran, H. Liu, H. Lin, J. Luo, Q. Yuan, et al. 2023. Genetic diversity and population divergence of Leonurus japonicus and its distribution dynamic changes from the last interglacial to the present in China. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04284-x

Background Leonurus japonicus , a significant medicinal plant known for its therapeutic effects on gynecological and cardiovascular diseases, has genetic diversity that forms the basis for germplasm preservation and utilization in medicine. Despite its economic value, limited research has focused on its genetic diversity and divergence. Results The avg. nucleotide diversity of 59 accessions from China were 0.00029 and hotspot regions in petN-psbM and rpl32-trnL (UAG) spacers, which can be used for genotype discrimination. These accessions divided into four clades with significant divergence. The four subclades, which split at approximately 7.36 Ma, were likely influenced by the Hengduan Mountains uplift and global temperature drop. The initial divergence gave rise to Clade D, with a crown age estimated at 4.27 Ma, followed by Clade C, with a crown age estimated at 3.39 Ma. The four clades were not showed a clear spatial distribution. Suitable climatic conditions for the species were identified, including warmest quarter precipitation 433.20 mm ~ 1,524.07 mm, driest month precipitation > 12.06 mm, and coldest month min temp > -4.34 °C. The high suitability distribution showed contraction in LIG to LGM, followed by expansion from LGM to present. The Hengduan Mountains acted as a glacial refuge for the species during climate changes. Conclusions Our findings reflected a clear phylogenetic relationships and divergence within species L. japonicus and the identified hotspot regions could facilitate the genotype discrimination. The divergence time estimation and suitable area simulation revealed evolution dynamics of this species and may propose conservation suggestions and exploitation approaches in the future.