Science Rendue Possible

Tulowiecki, S. J., and N. LaDuke. 2024. Models reveal shifting distribution of climatic suitability for pawpaw (Asimina triloba [L.] Dunal) cultivation under future climate change scenarios. Scientia Horticulturae 338: 113837. https://doi.org/10.1016/j.scienta.2024.113837

The pawpaw (Asimina triloba [L.] Dunal) is a deciduous tree notable for its large edible fruit. Native to the eastern US and Canada, it has earned attention as a horticultural commodity and focus of scientific inquiry. However, few studies have modeled its potential future distribution under climate change. This study predicted the current and future potential distribution for pawpaw in North America and globally, with a focus on understanding future climatic suitability for fruit cultivation. This study first modeled suitability via the Maximum Entropy (MaxEnt) method by relating climate predictors with different datasets on pawpaw distribution, including nursery locations growing pawpaw. It also trained a boosted regression tree (BRT) model to estimate where sufficient heat accumulation for fruit ripening would occur. The models were applied to two future times (2041–2060 and 2081–2100), four emissions scenarios (SSP126, SSP245, SSP370, and SSP585), and climate projections from three climate models. Using nursery locations, the MaxEnt model yielded a mean area-under-the-curve statistic of 0.978 (standard deviation = 0.009) using 10-fold cross-validation, indicating strong predictive performance. The model suggested optimal conditions for pawpaw at these values: -4 °C for minimum temperature of coldest month, 26 °C for maximum temperature of warmest month, 88 cm for annual precipitation, and 0 % for precipitation seasonality. Models suggested shifting suitable climate conditions and accompanying increases in heat accumulation for fruit ripening. Northern America, Eastern Europe, and Northern Europe were predicted to have higher and increasing suitability; Western Europe, Southern Europe, and Eastern Asia were predicted to have higher but decreasing suitability. Little uncertainty existed due to collinearity shift or dissimilarity between current and future climate, but more uncertainty existed when predictions were based on differing climate model projections. This study provides insight into the pawpaw's potential response to climate change, and guidance on future locations for cultivation.

Parys, K., K. Huntzinger, A. Seshadri, and T. Rashid. 2024. First record of <i>Xenoglossa </i>(<i>Cemolobus</i>) <i>ipomoeae </i>(Robertson, 1891) in Mississippi: Distribution, ecology, and conservation implications. Journal of Melittology. https://doi.org/10.17161/jom.vi120.22418

The first record of Xenoglossa (Cemolobus) ipomoeae (Robertson, 1891) (Apidae: Eucerini) for the state of Mississippi, USA is reported. This species is a rarely encountered specialist bee that is known to forage on Ipomoea pandurata (L.) G.F.W. Mey (Convolvulaceae), potentially along with other closely related plants in the genus Ipomoea. A single female was collected in Bolivar County during 2017 that a represents a significant southwestern range expansion for this bee species.

Ackerman, J. D., W. Recart, L. Soifer, W. Falcón, and C. Baider. 2024. Invasions of the bamboo orchid: performance variability on islands oceans apart. Biological Invasions. https://doi.org/10.1007/s10530-024-03442-y

Traits associated with successful biological invasions across environmental gradients or geographical distances may vary depending on processes such as founder effects, ecological sorting, or adaptation to local conditions. Consequently, drivers of success are not necessarily consistent throughout the invasive range. We evaluate how plant traits, reproductive success and climatic preferences vary in populations of a naturalized orchid on islands in the Atlantic, Pacific and Indian oceans. Populations of Arundina graminifolia (bamboo orchid) were located on Puerto Rico, Hawaiian Islands (Hawai’i, O’ahu, Kaua’i), and Mauritius. Vegetative and reproductive traits were measured, and male and female success were assessed. Populations were compared using multivariate approaches. Species distribution modeling was used to assess potential climatic preferences within and among islands. Floral morphology differed among islands but considerable overlap in trait distributions exists. Reproductive success significantly differed among islands and was linked to floral traits, local pollinator pools and perhaps variable levels of florivory. Hawaiian populations occupied the broadest climatic niche space and Mauritius the most restricted. The effectiveness of using present points from the native range to reveal climatic suitability on invaded islands varied among islands. Successful invasions across a broad geographical range can occur even when morphology, reproductive success and climatic conditions are variable. As expected, some aspects of this global invasion are similar, but others differ among islands underscoring the context dependency of biological invasions and the difficulty of overall predictions. Los rasgos asociados a las invasiones biológicas exitosas a través de gradientes ambientales o distancias geográficas pueden variar dependiendo de procesos tales como el efecto fundador, el sorteo ecológico, o las adaptaciones a las condiciones locales. Consecuentemente, los impulsores del éxito no son necesariamente consistentes a través de la distribución invadida. Nosotros evaluamos cómo los rasgos, el éxito reproductivo y las preferencias climáticas varían en poblaciones de una orquídea naturalizada en islas de los océanos Atlántico, Pacífico e Índico. Las poblaciones de Arundina graminifolia (orquídea bambú) estaban localizadas en Puerto Rico, las Islas Hawaianas (Hawai’i, O’ahu, Kaua’i) y en la Isla de Mauricio. Los rasgos vegetativos y reproductivos fueron medidos, y el éxito reproductivo masculino y femenino fue evaluado. Comparamos las poblaciones usando enfoques estadísticos multivariados. También usamos modelos de distribución de especies para evaluar las preferencias climáticas tanto dentro de las islas, así como entre ellas. La morfología floral difirió entre islas, pero existe un sobrelapamiento considerable en la distribución de rasgos. El éxito reproductivo fue significativamente diferente entre islas, y estuvo ligado a los rasgos florales, el conjunto de polinizadores locales y, quizá, a niveles variables de florivoría. Las poblaciones hawaianas ocuparon el nicho climático más amplio mientras que las mauricianas ocuparon el más restringido. La efectividad de usar puntos de presencia de la distribución nativa para revelar la adecuación climática de las islas invadidas varió entre islas. Encontramos que las invasiones exitosas a través de una distribución geográfica amplia pueden ocurrir a pesar de la variabilidad en morfología, éxito reproductivo y condiciones climáticas. Como era de esperarse, algunos aspectos de esta invasión global son similares, pero otros difieren entre islas, haciendo hincapié en la dependencia del contexto de las invasiones biológicas y la dificultad de hacer predicciones generalizadas. Les traits associés aux invasions biologiques sur des gradients environnementaux ou des distances géographiques peuvent varier en fonction de processus tels que les effets fondateurs, le tri écologique ou l'adaptation aux conditions locales. Par conséquent, les facteurs de réussite ne sont pas nécessairement cohérents dans l'ensemble de l'aire de répartition de l'invasion. Nous évaluons comment les caractéristiques des plantes, le succès de la reproduction et les préférences climatiques varient dans les populations d'une orchidée naturalisée sur des îles des océans Atlantique, Pacifique et Indien. Les populations d'Arundina graminifolia (orchidée bambou) ont été localisées à Porto Rico, dans les îles hawaïennes (Hawai'i, O'ahu, Kaua'i) et à l'île Maurice. Les traits végétatifs et reproductifs ont été mesurés, et le succès reproductifs des mâles et des femelles a été évalué. Les populations ont été comparées à l'aide d'approches multivariées. La modélisation de la distribution des espèces a été utilisée pour évaluer les préférences climatiques potentielles au sein des îles et entre elles. La morphologie florale diffère d'une île à l'autre, mais il existe un chevauchement considérable dans la répartition des caractéristiques. Le succès de la reproduction diffère significativement entre les îles et est lié aux caractéristiques florales, aux réservoirs locaux de pollinisateurs et peut-être à des niveaux variables de florivorie. Les populations hawaïennes ont occupé la niche climatique la plus large et les populations mauriciennes la plus restreinte. L'efficacité de l'utilisation de points de présences dans l'aire de répartition indigène pour révéler l'adéquation climatique des îles envahies varie d'une île à l'autre. Des invasions réussies sur une vaste aire de répartition géographique peuvent se produire même lorsque la morphologie, le succès de la reproduction et les conditions climatiques sont variables. Comme prévu, certains aspects de cette invasion mondiale sont similaires, mais d'autres diffèrent d'une île à l'autre, ce qui souligne l’importance du contexte des invasions biologiques et la difficulté des prédictions globales.

Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399

Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.

Mu, J., Z. Li, Q. Lu, H. Yu, C. Hu, Y. Mu, and J. Qu. 2024. Overlooked drivers of the greenhouse effect: The nutrient-methane nexus mediated by submerged macrophytes. Water Research 266: 122316. https://doi.org/10.1016/j.watres.2024.122316

Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.

Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z

The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.

H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71

It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Wei, Z., D. Jiao, C. A. Wehenkel, X. Wei, and X. Wang. 2024. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.13760

Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth‐largest conifer genus, is a keystone component of the boreal and temperate dark‐coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high‐latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.

Liu, Y., H. Wu, Z. Zhang, W. Wang, G. Han, C. Zhang, X. Lyu, et al. 2024. Traditional Use, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Persicae Semen: A Review. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-024-3815-4

Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.

Reichgelt, T. 2024. Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16364

Premise Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.MethodsThe occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.ResultsThree species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.ConclusionsVertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.