Science Rendue Possible

Gómez Díaz, J. A., A. Lira-Noriega, and F. Villalobos. 2023. Expanding protected areas in a Neotropical hotspot. International Journal of Sustainable Development & World Ecology: 1–15. https://doi.org/10.1080/13504509.2022.2163717

The region of central Veracruz is considered a biodiversity hotspot due to its high species richness and environmental heterogeneity, but only 2% of this region is currently protected. This study aimed to assess the current protected area system’s effectiveness and to identify priority conservation areas for expanding the existing protected area system. We used the distribution models of 1186 species from three kingdoms (Animalia, Plantae, and Fungi) together with ZONATION software, a conservation planning tool, to determine areas that could help expand the current network of protected areas. We applied three different parametrizations (including only species, using the boundary quality penalty, and using corridor connectivity). We found that protecting an additional 15% of the area would increase, between 16.2% and 19.3%, the protection of the distribution area of all species. We propose that the regions with a consensus of the three parametrizations should be declared as new protected areas to expand 374 km2 to the 216 km2 already protected. Doing so would double the protected surface in central Veracruz. The priority areas identified in this study have more species richness, carbon stock values, natural vegetation cover, and less human impact index than the existing protected areas. If our identified priority areas are declared protected, we could expect a future recovery of endangered species populations for Veracruz. The proposed new protected areas are planned and designed as corridors connecting currently isolated protected areas to promote biodiversity protection.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Camacho, F., and G. Peyre. 2022. Red List and Vulnerability Assessment of the Páramo Vascular Flora in the Nevados Natural National Park (Colombia). Tropical Conservation Science 15: 194008292210869. https://doi.org/10.1177/19400829221086958

Background and research aims. The Andean páramo is renowned for its unique biodiversity and sensitivity to environmental threats. However, vulnerability assessments remain scarce, which hinders our capacity to prioritize and apply efficient conservation measures. To this end, we established the Red List of the páramo vascular flora from the Nevados National Natural Park and proposed conservation strategies for its threatened species. Methods. We performed International Union for Conservation of Nature (IUCN) Red List assessments by evaluating Criterion B, including sub-criteria B1–Extent of Occurrence and B2–Area of Occupancy, and using a systematic geographic-ecological approach for conditions a (Location analysis) and b (Continuing decline). We then executed a Conservation Gap Analysis to prioritize species for in- situ and/or ex-situ conservation. Results. Summing our 233 evaluated species with previous assessments, we completed the Red List of 262 páramo species and encountered 3% Threatened (7 VU, one EN), 44% Not Threatened (65 LC, 50 NT), and 53% Data Deficient. We acknowledged Lupinus ruizensis as Endangered and Aequatorium jamesonii, Carex jamesonii, Elaphoglossum cuspidatum, Miconia latifolia, Miconia alborosea, Pentacalia gelida, and Themistoclesia mucronata as Vulnerable. Conclusion. The eight threatened species should be included as target species in the PNN Nevados management plan 2023–2028 and regarded as national conservation priorities. Implications for Conservation. We recommend in-situ conservation for Medium-Priority species A. jamesonii, E. cuspidatum, and T. mucronata with thorough monitoring, paired with sub-population transfers for High-Priority species C. jamesonii. For the endemic L. ruizensis and P. gelida, we suggest combined in-situ/ex-situ strategies taking advantage of national germoplasm collections, like the seed bank of the Bogotá Botanical Garden José Celestino Mutis.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Géron, C., J. J. Lembrechts, J. Borgelt, J. Lenoir, R. Hamdi, G. Mahy, I. Nijs, and A. Monty. 2021. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions 23: 1765–1779. https://doi.org/10.1007/s10530-021-02469-9

When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native…