Science Rendue Possible

Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin. https://doi.org/10.1111/epp.12922

Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.

Pérez-Hernández, C. X., W. Dáttilo, A. M. Corona-López, V. H. Toledo-Hernández, and E. del-Val. 2022. Buprestid trophic guilds differ in their structural role shaping ecological networks with their host plants. Arthropod-Plant Interactions. https://doi.org/10.1007/s11829-022-09933-w

Plant–herbivore relationships involve a significant amount of global biodiversity within complex interaction networks. Buprestidae (Coleoptera) are highly specialized herbivores, and several species have important economic and ecological impacts. We used tools derived from network theory to evaluate the structure of a plant-buprestid metaweb at three different organizational levels (network, subnetwork, and species-levels) and test whether trophic guilds and taxa differ in their patterns within the network. We also tested whether taxonomically closely related buprestid species are more likely to share the same host plant species. We found that the plant-buprestid metaweb exhibits a non-nested and significantly highly modular pattern, and most buprestid and host plant species have specialized interactions. Florivorous buprestids showed the highest diversity of host preferences and, together with Fabaceae, were the most important for the network structure as they are highly connected species. Leaf-mining buprestids had the most extreme interaction pattern among trophic guilds, with high modularity and specialized interactions. We also found a low probability to share the same group of host plants among buprestids, which decreased with taxonomic distance. Our findings uncover patterns within a plant–herbivore network at large spatial scales and at different taxonomic levels, which are shaped by the diversity of host and resources preferences, more than taxonomic relatedness. Those network patterns might reflect different ecological roles for each trophic guild and taxa. We highlight the relevance of considering the diversity of feeding habits within networks of a single type of interaction and emphasize the importance of analyze network patterns at high levels of organization.

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19

Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…

Gilioli, G., G. Sperandio, M. Colturato, S. Pasquali, P. Gervasio, A. Wilstermann, A. R. Dominic, and G. Schrader. 2021. Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biological Invasions 24: 261–279. https://doi.org/10.1007/s10530-021-02639-9

Understanding how climate change might influence the distribution and abundance of crop pests is fundamental for the development and the implementation of pest management strategies. Here we present and apply a modelling framework assessing the non-linear physiological responses of the life-history …

Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang, and Y. Li. 2020. Animal invaders threaten protected areas worldwide. Nature Communications 11. https://doi.org/10.1038/s41467-020-16719-2

Protected areas are the cornerstone of biodiversity conservation. However, alien species invasion is an increasing threat to biodiversity, and the extent to which protected areas worldwide are resistant to incursions of alien species remains poorly understood. Here, we investigate establishment by 8…

Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980. https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Sultana, S., J. B. Baumgartner, B. C. Dominiak, J. E. Royer, and L. J. Beaumont. 2020. Impacts of climate change on high priority fruit fly species in Australia N. T. Papadopoulos [ed.],. PLOS ONE 15: e0213820. https://doi.org/10.1371/journal.pone.0213820

Tephritid fruit flies are among the most destructive horticultural pests posing risks to Australia’s multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly species of economic concern in Australia. Of these, nine are native to this continent (Bactrocera aquilonis, B. bryo…

Sultana, S., J. B. Baumgartner, B. C. Dominiak, J. E. Royer, and L. J. Beaumont. 2019. Impacts of climate change on high priority fruit fly species in Australia. https://doi.org/10.1101/567321

Tephritid fruit flies are among the most destructive horticultural pests and pose risks to Australia’s multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly species of economic concern present in various regions of Australia. Of these, nine are native to this continent (…