Science Rendue Possible

Murray, E. A., Evanhoe, L., Bossert, S., Geber, M. A., Griswold, T., & McCoshum, S. M. (2021). Phylogeny, Phenology, and Foraging Breadth of Ashmeadiella (Hymenoptera: Megachilidae). Insect Systematics and Diversity, 5(3). doi:10.1093/isd/ixab010 https://doi.org/10.1093/isd/ixab010

Ashmeadiella Cockerell (Megachilidae: Osmiini) is a bee genus endemic to North America, with greatest richness in arid and Mediterranean regions of the southwestern United States. Species relationships of Ashmeadiella were last analyzed in the 1950s, when Robert Sokal and Charles Michener developed …

Tabor, J. A., & Koch, J. B. (2021). Ensemble Models Predict Invasive Bee Habitat Suitability Will Expand under Future Climate Scenarios in Hawai’i. Insects, 12(5), 443. doi:10.3390/insects12050443 https://doi.org/10.3390/insects12050443

Climate change is predicted to increase the risk of biological invasions by increasing the availability of climatically suitable regions for invasive species. Endemic species on oceanic islands are particularly sensitive to the impact of invasive species due to increased competition for shared resou…

Williamson, J. L., & Witt, C. C. (2021). Elevational niche-shift migration: Why the degree of elevational change matters for the ecology, evolution, and physiology of migratory birds. Ornithology, 138(2). doi:10.1093/ornithology/ukaa087 https://doi.org/10.1093/ornithology/ukaa087

Elevational migration can be defined as roundtrip seasonal movement that involves upward and downward shifts in elevation. These shifts incur physiological challenges that are proportional to the degree of elevational change. Larger shifts in elevation correspond to larger shifts in partial pressure…

Rew, J., Cho, Y., & Hwang, E. (2021). A Robust Prediction Model for Species Distribution Using Bagging Ensembles with Deep Neural Networks. Remote Sensing, 13(8), 1495. doi:10.3390/rs13081495 https://doi.org/10.3390/rs13081495

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species …

Ellestad, P., Forest, F., Serpe, M., Novak, S. J., & Buerki, S. (2021). Harnessing large-scale biodiversity data to infer the current distribution of Vanilla planifolia (Orchidaceae). Botanical Journal of the Linnean Society. doi:10.1093/botlinnean/boab005 https://doi.org/10.1093/botlinnean/boab005

Although vanilla is one of the most popular flavours in the world, there is still uncertainty concerning the native distribution of the species that produces it, Vanilla planifolia. To circumscribe the native geographical extent of this economically important species more precisely, we propose a new…

Ji, Y. (2021). The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie. doi:10.1007/s13592-020-00826-6 https://doi.org/10.1007/s13592-020-00826-6

An understanding of the origin and formation of biodiversity and distribution patterns can provide a theoretical foundation for biodiversity conservation. In this study, phylogeny and biogeography analyses based on mitochondrial genomes and niche modeling based on occurrence records were performed t…

Orr, M. C., Hughes, A. C., Chesters, D., Pickering, J., Zhu, C.-D., & Ascher, J. S. (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. doi:10.1016/j.cub.2020.10.053 https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…

Dorey, J. B., Fagan-Jeffries, E. P., Stevens, M. I., & Schwarz, M. P. (2020). Morphometric comparisons and novel observations of diurnal and low-light-foraging bees. Journal of Hymenoptera Research, 79, 117–144. doi:10.3897/jhr.79.57308 https://doi.org/10.3897/jhr.79.57308

Low-light adapted bees are substantially understudied components of the bee fauna, particularly in Australia. Whilst several species in Australia are thought to be adapted to low-light conditions, explicit records of these taxa actually foraging at twilight or night are absent from the scientific li…

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Kilpatrick, S. K., Gibbs, J., Mikulas, M. M., Spichiger, S.-E., Ostiguy, N., Biddinger, D. J., & Lopez-Uribe, M. M. (2020). An updated checklist of the bees (Hymenoptera, Apoidea, Anthophila) of Pennsylvania, United States of America. Journal of Hymenoptera Research, 77, 1–86. doi:10.3897/jhr.77.49622 https://doi.org/10.3897/jhr.77.49622

Checklists provide information about the species found in a defined region and serve as baselines for detecting species range expansions, contractions, or introductions. Bees are a diverse and important group of insect pollinators. Although some bee populations are declining, these patterns are diff…