Science Rendue Possible
Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10. https://doi.org/10.1098/rsos.230725
Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.
Chiarenza, A. A., A. M. Waterson, D. N. Schmidt, P. J. Valdes, C. Yesson, P. A. Holroyd, M. E. Collinson, et al. 2022. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology. https://doi.org/10.1016/j.cub.2022.11.056
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5–23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Medina-Castañeda, C. I., V. M. Bravo-Cuevas, and J. A. Cruz. 2022. Turtles from the Late Pleistocene of Hidalgo and Puebla and their paleobiogeographic and paleoclimatic significance. Quaternary International. https://doi.org/10.1016/j.quaint.2022.07.008
We describe and identify fossil material of turtles recovered from several Pleistocene localities of Hidalgo and Puebla. A comparative study with selected specimens of extant and extinct turtles revealed that the fossil sample evidences two families (Kinosternidae and Testudinidae), three genera (Kinosternon, Gopherus, and aff. Hesperotestudo), and two species (K. flavescens and G. berlandieri). This record supplements their occurrence in the country, being common inhabitants of central Mexico. We performed a paleoclimatic reconstruction of the Valsequillo Basin using the Mutual Ecogeographic Range (MER) method, given that in this area the fossil material was identified to species level, including K. flavescens and G. berlandieri. The potential climatic conditions based on the distribution model and the current habitats of these turtles suggest that the climate was warmer with similar precipitation (21.99 °C mean annual temperature and 623 mm mean annual precipitation) in comparison to the current ones (17 °C mean annual temperature and 622.2 mm mean annual precipitation). By the same token, the presence of xerophytic thickets and desert areas suitable for G. berlandieri, associated with bodies of water inhabited by K. flavescens, is proposed.
Hughes, A. C., M. C. Orr, K. Ma, M. J. Costello, J. Waller, P. Provoost, Q. Yang, et al. 2021. Sampling biases shape our view of the natural world. Ecography 44: 1259–1269. https://doi.org/10.1111/ecog.05926
Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…
Oegelund Nielsen, R., R. da Silva, J. Juergens, J. Staerk, L. Lindholm Sørensen, J. Jackson, S. Q. Smeele, and D. A. Conde. 2020. Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief 33: 106337. https://doi.org/10.1016/j.dib.2020.106337
#N/A
Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067
In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…