Bionomia sera hors ligne 2024-05-19 12:00 UTC pendant 1 hr, suivant des nouvelles données.

Science Rendue Possible

Wei, X., D. Xu, and Z. Zhuo. 2023. Predicting the Impact of Climate Change on the Geographical Distribution of Leafhopper, Cicadella viridis in China through the MaxEnt Model. Insects 14: 586.

Cicadella viridis (Hemiptera: Cicadellidae) is an omnivorous leafhopper that feeds on plant sap. It significantly reduces the yield of agricultural and forestry crops while feeding or ovipositing on the host plant. In recent years, the rapid expansion of C. viridis has posed a serious threat to agricultural and forestry crops. To study the impact of climate change on the geographical distribution of the leafhopper, the maximum entropy (MaxEnt) model and ArcGIS software, combined with 253 geographic distribution records of the pest and 24 environmental variables, were used, for the first time, to predict the potential distribution of C. viridis in China under conditions of climatic change. The results showed that the currently suitable areas for C. viridis are 29.06–43° N, 65.25–85.15° E, and 93.45–128.85° E, with an estimated area of 11,231,423.79 km2, i.e., 11.66% of China. The Loess Plateau, the North China Plain, and the Shandong Peninsula are the main suitable areas. The potential distribution of the leafhopper for the high and medium suitability areas decreased under each climate scenario (except RCP8.5 in the 2090s). Several key variables that have the most significant effect on the distribution of C. viridis were identified, including the mean annual temperature (Bio1), the standard deviation of temperature seasonality (Bio4), the minimum temperature of the coldest month (Bio6), and the precipitation of the coldest quarter (Bio19). Our research provides important guidance for developing effective monitoring and pest control methods for C. viridis, given the predicted challenges of altered pest dynamics related to future climate change.

Bharti, D. K., P. Y. Pawar, G. D. Edgecombe, and J. Joshi. 2023. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). Global Ecology and Biogeography.

Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0–0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography.

Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at Fifty individual datasets are also available at, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.

Jacquemyn, H., T. Pankhurst, P. S. Jones, R. Brys, and M. J. Hutchings. 2023. Biological Flora of Britain and Ireland: Liparis loeselii. Journal of Ecology.

This account presents information on all aspects of the biology of Liparis loeselii (L.) Rich. (Fen Orchid) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of Britain and Ireland: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation.Liparis loeselii is a small terrestrial orchid that has a circumboreal distribution and is widespread in Europe and North America. Despite its wide distribution, the species is locally rare and has declined considerably in most of its range. In Britain, the species has a disjunct distribution and is now known to occur consistently at only six sites in eastern England and three in south Wales. It is absent from Ireland. Its most characteristic habitats in Britain are inland fens and coastal dune slacks, but outside Britain it can also be found in wet meadows, marshes, forested seep springs, at lake borders or on mats of floating peat.Populations of Liparis loeselii in dune slacks tend to be short‐lived, and can rapidly increase in size or decrease and disappear as environmental conditions change. The species does not tolerate high nutrient concentrations or low pH. It is susceptible to drought, which reduces seed germination, seedling recruitment and adult survival. Heavy predation by rabbits and rodents has been observed under drought conditions.Liparis loeselii reproduces both by sexual reproduction, and by vegetative propagation through the production of pseudobulbs. Although flowers are accessible to insects, entomophilous pollination is unusual, and most sexual reproduction is the result of selfing. Fruits ripen late in the growing season (mid‐October) and the dust‐like seeds are dispersed during winter by wind and water. Germination occurs during the following growing season and is supported by a wide variety of mycorrhizal fungi.Since the late 19th century Liparis loeselii has declined considerably in Britain and elsewhere in Europe, primarily due to habitat destruction and loss, natural succession, and habitat desiccation due to drainage. As a result, the species has been listed as endangered in the Bern Convention and the European Habitat Directive (92/43/EEC), and is the focus of intensive conservation efforts in many countries. Restoration of habitat by mowing, extensive grazing, peat removal, and the creation of new habitat by dune slack formation in dune systems and peat removal in fens may prolong population persistence and promote establishment of new populations.

Ittonen, M., A. Hagelin, C. Wiklund, and K. Gotthard. 2022. Local adaptation to seasonal cues at the fronts of two parallel, climate‐induced butterfly range expansions. Ecology Letters 25: 2022–2033.

Climate change allows species to expand polewards, but non‐changing environmental features may limit expansions. Daylength is unaffected by climate and drives life cycle timing in many animals and plants. Because daylength varies over latitudes, poleward‐expanding populations must adapt to new daylength conditions. We studied local adaptation to daylength in the butterfly Lasiommata megera, which is expanding northwards along several routes in Europe. Using common garden laboratory experiments with controlled daylengths, we compared diapause induction between populations from the southern‐Swedish core range and recently established marginal populations from two independent expansion fronts in Sweden. Caterpillars from the northern populations entered diapause in clearly longer daylengths than those from southern populations, with the exception of caterpillars from one geographically isolated population. The northern populations have repeatedly and rapidly adapted to their local daylengths, indicating that the common use of daylength as seasonal cue need not strongly limit climate‐induced insect range expansions.

Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980.

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …