Science Rendue Possible

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Xu, J., N. Chai, T. Zhang, T. Zhu, Y. Cheng, S. Sui, M. Li, and D. Liu. 2021. Prediction of temperature tolerance in Lilium based on distribution and climate data. iScience 24: 102794. https://doi.org/10.1016/j.isci.2021.102794

There are plenty publications providing guidance for resistant taxa selection by experimental researches while the number of experimental taxa is often restricted. In this study, we presented a concise method to predict the temperature tolerance of wild Lilium in China based on open access botanical…

DeLaMater, D. S., J. J. Couture, J. R. Puzey, and H. J. Dalgleish. 2021. Range‐wide variations in common milkweed traits and their effect on monarch larvae. American Journal of Botany 108: 388–401. https://doi.org/10.1002/ajb2.1630

Premise: Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment–plant trait–herbivore interactions within a species at a ra…

Briscoe Runquist, R. D., T. A. Lake, and D. A. Moeller. 2021. Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography 48: 1693–1705. https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., M. Vilà, F. Lloret, J. Manuel Herrera, and P. González‐Moreno. 2021. Assembly of species’ climatic niches of coastal communities does not shift after invasion Z. Botta‐Dukát [ed.],. Journal of Vegetation Science 32. https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Follak, S., L. Bakacsy, F. Essl, L. Hochfellner, K. Lapin, M. Schwarz, B. Tokarska-Guzik, and D. Wołkowycki. 2021. Monograph of invasive plants in Europe N°6: Asclepias syriaca L. Botany Letters 168: 422–451. https://doi.org/10.1080/23818107.2021.1886984

This work synthesizes all aspects of Asclepias syriaca L. (Apocynaceae) including the taxonomy, distribution, history of introduction and spread, ecology, biology, uses and benefits, impacts on biodiversity and agriculture, legislation, and management. Asclepias syriaca is a perennial broad-leaved s…

Géron, C., J. J. Lembrechts, J. Borgelt, J. Lenoir, R. Hamdi, G. Mahy, I. Nijs, and A. Monty. 2021. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions 23: 1765–1779. https://doi.org/10.1007/s10530-021-02469-9

When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native…

Allstädt, F. J., A. Koutsodendris, E. Appel, W. Rösler, T. Reichgelt, S. Kaboth-Bahr, A. A. Prokopenko, and J. Pross. 2021. Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments 101: 177–195. https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Brendel, M. R., F. M. Schurr, and C. S. Sheppard. 2020. Inter‐ and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time A. Ordonez [ed.],. Global Ecology and Biogeography 30: 429–442. https://doi.org/10.1111/geb.13228

Aim: When alien species are introduced to new ranges, climate or trait mismatches may initially constrain their population growth. However, inter‐ and intraspecific selection in the new environment should cause population growth rates to increase with residence time. Using a species‐for‐time approac…