Science Rendue Possible
Calleja-Satrustegui, A., A. Echeverría, I. Ariz, J. Peralta de Andrés, and E. M. González. 2024. Unlocking nature’s drought resilience: a focus on the parsimonious root phenotype and specialised root metabolism in wild Medicago populations. Plant and Soil. https://doi.org/10.1007/s11104-024-06943-w
Abstract Background and aims Crop wild relatives, exposed to strong natural selection, exhibit effective tolerance traits against stresses. While an aggressive root proliferation phenotype has long been considered advantageous for a range of stresses, it appears to be counterproductive under drought due to its high metabolic cost. Recently, a parsimonious root phenotype, metabolically more efficient, has been suggested to be better adapted to semiarid environments, although it is not clear that this phenotype is a trait exhibited by crop wild relatives. Methods Firstly, we analysed the root phenotype and carbon metabolism in four Medicago crop wild relatives adapted to a semiarid environment and compared them with the cultivated M. truncatula Jemalong (A17). Secondly, we exposed the cultivated (probably the least adapted genotype to aridity) and the wild (the most common one in arid zones) M. truncatula genotypes to water deficit. The carbon metabolism response in different parts of their roots was analysed. Results A reduced carbon investment per unit of root length was a common trait in the four wild genotypes, indicative of an evolution towards a parsimonious root phenotype. During the water deficit experiment, the wild M. truncatula showed higher tolerance to drought, along with a superior ability of its taproot to partition sucrose and enhanced capacity of its fibrous roots to maintain sugar homeostasis. Conclusion A parsimonious root phenotype and the spatial specialization of root carbon metabolism represent two important drought tolerance traits. This work provides relevant findings to understand the response of Medicago species roots to water deficit.
Lu, K., M. Liu, K. Hu, Y. Liu, Y. He, H. Bai, Z. Du, and Y. Duan. 2024. Potential Global Distribution and Habitat Shift of Prunus subg. Amygdalus Under Current and Future Climate Change. Forests 15: 1848. https://doi.org/10.3390/f15111848
The genus of Prunus subg. Amygdalus are endangered Tertiary-relict plants that are an essential source of woody plant oil. In order to provide a theoretical basis for better protection and utilization of species in the Prunus subg. Amygdalus. This study collected global distribution information for six species within the Prunus subg. Amygdalus, along with data on 29 environmental and climatic factors. The Maximum Entropy (MaxEnt) model was used to simulate the globally suitable distribution areas for these species within the subgenus. The suitable results showed that the area under the test curve (AUC) values of the simulation results were more than 0.8, indicating that the simulation results have high accuracy. Temperature, precipitation, UV-B, and altitude were critical environmental factors affecting the distribution of each species in Prunus subg. Amygdalus. Currently, the distribution area of six species in this genus, from largest to smallest, is Prunus triloba (Lindl.) Ricker, Prunus tenella Batsch, Prunus amygdalus Batsch, Prunus pedunculata Maxim, Prunus mongolica Maxim and Prunus tangutica (Batal.) Korsh. The simulation results of distribution areas showed that under the ssp2.45 and ssp5.85 scenarios, the potential distribution areas of P. amygdalus, P. tangutica, and P. pedunculata all show a decreasing trend, while the distribution areas of P. mongolica and P. tenella, and P. triloba exhibit an increasing trend. The general distribution of P. amygdalus, P. mongolica, and P. tenella will trend to transfer in a northwest direction. P. tangutica and P. pedunculata were affected by other environmental factors (such as slope, altitude, and soil pH), and the distribution area has a tendency to move northeastward. The P. triloba moved to the southwest. The spatiotemporal distribution patterns of Prunus subg. Amygdalus can be used as a reference for forest management and to formulate species conservation strategies.
Radbouchoom, S., M. D. delos Angeles, T. Phutthai, and H. Schneider. 2024. Towards zero extinction—A case study focusing on the plant genus Begonia in Thailand. Integrative Conservation. https://doi.org/10.1002/inc3.67
Plant species with small habitat ranges and specific edaphic requirements are highly vulnerable to extinction and thus require enhanced attention in biodiversity conservation. This study was designed to explore the challenges of protecting such plant species by evaluating the in situ and ex situ conservation capacities available for Thailand's species of the mega‐diverse plant genus Begonia L. A comprehensive assessment of occurrence records across the country was conducted to evaluate the spatial distribution of Begonia diversity in Thailand, identify biodiversity hotspots, assess the extinction threats faced by the 60 Begonia species known in the country, and identify existing conservation capacities and potential gaps. The results show that 78% of Begonia species in Thailand are vulnerable to extinction, with the Northern floristic region identified as both a Begonia species hotspot and a region with major conservation gaps. While in situ conservation efforts have been successful in covering over 88% of the species, they have failed to provide the protection required to achieve zero extinction. Ex situ conservation capacities are poorly developed, with only 13% of species present in botanical gardens, and no seed banking or other related activities have been initiated. This evaluation presents a sharply contrasting message: on one hand, Thailand has assembled substantial capacities to protect these plants through established national parks and other protected areas, but on the other hand, essential capacities are still lacking to render the zero extinction target achievable. We advocate for the implementation of a multi‐component conservation strategy to enable Thailand to move towards zero species extinction, even for plant species with narrow habitat ranges and high edaphic specialisation.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Goicolea, T., A. Adde, O. Broennimann, J. I. García‐Viñas, A. Gastón, M. José Aroca‐Fernández, A. Guisan, and R. G. Mateo. 2024. Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies. Ecography. https://doi.org/10.1111/ecog.07328
Spatial truncation in species distribution models (SDMs) might cause niche truncation and model transferability issues, particularly when extrapolating models to non‐analog environmental conditions. While broad calibration extents reduce truncation issues, they usually overlook local ecological factors driving species distributions at finer resolution. Spatially‐nested hierarchical SDMs (HSDMs) address truncation by merging (a) a global model calibrated with broadly extended, yet typically low‐resolution, basic, and imprecise data; and (b) a regional model calibrated with spatially restricted but more precise and reliable data. This study aimed to examine HSDMs' efficacy to overcome spatial truncation in national‐scale studies. We compared two hierarchical strategies (‘covariate', which uses the global model output as a covariate for the regional model, and ‘multiply', which calculates the geometric mean of the global and regional models) and a non‐hierarchical strategy. The three strategies were compared in terms of niche truncation, environmental extrapolation, model performance, species' predicted distributions and shifts, and trends in species richness. We examined the consistency of the results over two study areas (Spain and Switzerland), 108 tree species, and four future climate scenarios. Only the non‐hierarchical strategy was susceptible to niche truncation, and environmental extrapolation issues. Hierarchical strategies, particularly the ‘covariate' one, presented greater model accuracy than non‐hierarchical strategies. The non‐hierarchical strategy predicted the highest overall values and the lowest decreases over time in species distribution ranges and richness. Differences between strategies were more evident in Switzerland, which was more affected by niche truncation issues. Spain was more negatively affected by climate change and environmental extrapolation. The ‘covariate' strategy exhibited higher model performance than the ‘multiply' one. However, uncertainties regarding model temporal transferability advocate for adopting and further examining multiple hierarchical approaches. This research underscores the importance of adopting spatially‐nested hierarchical SDMs given the compromised reliability of non‐hierarchical approaches due to niche truncation and extrapolation issues.
ÖZCAN, A. U., D. GÜLÇİN, and K. ÇİÇEK. 2023. MODELING THE DISTRIBUTION OF CRIMEAN JUNIPER (JUNIPERUS EXCELSA M. BIEB.): RANGE SHIFTS IN CURRENT AND POTENTIAL FUTURE DISTRIBUTION. https://doi.org/10.5281/zenodo.10125252
(no abstract available)
Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
Rosas, M. R., R. A. Segovia, and P. C. Guerrero. 2023. Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal. Plants 12: 2721. https://doi.org/10.3390/plants12142721
The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere.
Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009
Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.