Science Rendue Possible

Hoorn, C., Kukla, T., Bogotá-Angel, G., van Soelen, E., González-Arango, C., Wesselingh, F. P., … Morley, R. J. (2021). Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change, 103717. doi:10.1016/j.gloplacha.2021.103717 https://doi.org/10.1016/j.gloplacha.2021.103717

In the Miocene, a large wetland system extended from the Andean foothills into western Amazonia. This system has no modern analogue and the driving mechanisms are not yet fully understood. Dynamic topography and Andean uplift are thought to have controlled deposition, with allocyclic base level chan…

Beaulieu, W. T., Panaccione, D. G., Quach, Q. N., Smoot, K. L., & Clay, K. (2021). Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Communications Biology, 4(1). doi:10.1038/s42003-021-02870-z https://doi.org/10.1038/s42003-021-02870-z

Heritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in …

Vasconcelos, T., Boyko, J. D., & Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. doi:10.1111/jbi.14292 https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., Gadagkar, S. R., Albright, T. P., Yang, X., Li, J., Xia, C., … Yu, S. (2021). Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 32, e01885. doi:10.1016/j.gecco.2021.e01885 https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Escobar, S., Helmstetter, A. J., Montúfar, R., Couvreur, T. L. P., & Balslev, H. (2022). Phylogenomic relationships and historical biogeography in the South American vegetable ivory palms (Phytelepheae). Molecular Phylogenetics and Evolution, 166, 107314. doi:10.1016/j.ympev.2021.107314 https://doi.org/10.1016/j.ympev.2021.107314

The palm tribe Phytelepheae form a clade of three genera and eight species whose phylogenetic relationships and historical biogeography are not fully understood. Based on morphological similarities and phylogenetic relatedness, it has been suggested that Phytelephas seemannii and Phytelephas schotti…

Riibe, L., Sundue, M., Sessa, E., & Testo, W. (2021). A Reassessment of the Little-Known Amazonian Fern Diplazium praestans Based on Molecular and Morphological Evidence. Systematic Botany, 46(2), 260–272. doi:10.1600/036364421x16231782047451 https://doi.org/10.1600/036364421X16231782047451

Family- and genus-level circumscription of ferns in the suborder Aspleniineae (eupolypods II) has long been controversial, due in part to confusion about the relationship among the families Aspleniaceae and Athyriaceae. Recent studies have demonstrated that character states traditionally used to inf…

Henning, T., Allen, J. P., & Rodríguez Rodríguez, E. F. (2021). A new species of Utricularia Sect. Orchidioides (Lentibulariaceae) from the Amotape-Huancabamba Zone of North Peru. Darwiniana, Nueva Serie, 9(2), 299–311. doi:10.14522/darwiniana.2021.92.955 https://doi.org/10.14522/darwiniana.2021.92.955

A new species of Utricularia Section Orchidioides: Utricularia amotape-huancabambensis sp. nov. (Lentibulariaceae), endemic to Northern Peru is described and illustrated. It is known from two populations so far, both located in the Province Bongará, Dpto. Amazonas at ca. 2200 m altitude. The new spe…

Chu, X., Gugger, P. F., Li, L., Zhao, J., & Li, Q. (2021). Responses of an endemic species ( Roscoea humeana ) in the Hengduan Mountains to climate change. Diversity and Distributions. doi:10.1111/ddi.13397 https://doi.org/10.1111/ddi.13397

Aim: Adaptation, migration and extinction of species is closely associated with climate changes and shape the distribution of biodiversity. The adaptive responses of species in the biodiversity hotspot, the Hengduan Mountains, to climate change remain poorly understood. Location: The Hengduan Mount…

Baumbach, L., Warren, D. L., Yousefpour, R., & Hanewinkel, M. (2021). Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology, 4(1). doi:10.1038/s42003-021-02359-9 https://doi.org/10.1038/s42003-021-02359-9

The tropical forests of Central America serve a pivotal role as biodiversity hotspots and provide ecosystem services securing human livelihood. However, climate change is expected to affect the species composition of forest ecosystems, lead to forest type transitions and trigger irrecoverable losses…

Lopes, A., Demarchi, L. O., Franco, A. C., Ferreira, A. B., Ferreira, C. S., Wittmann, F., … Piedade, M. T. F. (2021). Predicting the potential distribution of aquatic herbaceous plants in oligotrophic Central Amazonian wetland ecosystems. Acta Botanica Brasilica. doi:10.1590/0102-33062020abb0188 https://doi.org/10.1590/0102-33062020abb0188

Aquatic herbaceous plants are especially suitable for mapping environmental variability in wetlands, as they respond quickly to environmental gradients and are good indicators of habitat preference. We describe the composition of herbaceous species in two oligotrophic wetland ecosystems, floodplains…