Science Rendue Possible

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Newbold, T., Oppenheimer, P., Etard, A., & Williams, J. J. (2020). Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology & Evolution. doi:10.1038/s41559-020-01303-0 https://doi.org/10.1038/s41559-020-01303-0

Global biodiversity is undergoing rapid declines, driven in large part by changes to land use and climate. Global models help us to understand the consequences of environmental changes for biodiversity, but tend to neglect important geographical variation in the sensitivity of biodiversity to these …

Chevalier, M., Chase, B. M., Quick, L. J., Dupont, L. M., & Johnson, T. C. (2020). Temperature change in subtropical southeastern Africa during the past 790,000 yr. Geology. doi:10.1130/g47841.1 https://doi.org/10.1130/G47841.1

Across the glacial-interglacial cycles of the late Pleistocene (~700 k.y.), temperature variability at low latitudes is often considered to have been negligible compared to changes in precipitation. However, a paucity of quantified temperature records makes this difficult to reliably assess. In this…

Mothes, C. C., Howell, H. J., & Searcy, C. A. (2020). Habitat suitability models for the imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Global Ecology and Conservation, 24, e01247. doi:10.1016/j.gecco.2020.e01247 https://doi.org/10.1016/j.gecco.2020.e01247

The use of ecological niche models to predict how future climate change may impact habitat suitability is a critical component of imperiled species management. These models allow for the identification of areas with high future suitability that will support the persistence of the species. We develop…

Chollett, I., & Robertson, D. R. (2020). Comparing biodiversity databases: Greater Caribbean reef fishes as a case study. Fish and Fisheries. doi:10.1111/faf.12497 https://doi.org/10.1111/faf.12497

There is a widespread need for reliable biodiversity databases for science and conservation. Among the many public databases available, we lack guidance as to how their data quality varies. Here, we compare species distribution data for a well known regional reef fish fauna extracted from five globa…

Sharifian, S., Kamrani, E., & Saeedi, H. (2020). Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. Journal of Thermal Biology, 92, 102692. doi:10.1016/j.jtherbio.2020.102692 https://doi.org/10.1016/j.jtherbio.2020.102692

Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of m…

Zigler, K., Niemiller, M., Stephen, C., Ayala, B., Milne, M., Gladstone, N., … Cressler, A. (2020). Biodiversity from caves and other sub-terranean habitats of Georgia, USA. Journal of Cave and Karst Studies, 82(2), 125–167. doi:10.4311/2019lsc0125 https://doi.org/10.4311/2019LSC0125

We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemi…

Pili, A. N., Tingley, R., Sy, E. Y., Diesmos, M. L. L., & Diesmos, A. C. (2020). Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Scientific Reports, 10(1). doi:10.1038/s41598-020-64568-2 https://doi.org/10.1038/s41598-020-64568-2

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species’ potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hyla…