Science Rendue Possible

Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. doi:10.1111/ecog.05926 https://doi.org/10.1111/ecog.05926

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

Covarrubias, S., Gutiérrez-Rodríguez, C., Rojas-Soto, O., Hernández-Guzmán, R., & González, C. (2021). Functional connectivity of an endemic tree frog in a highly threatened tropical dry forest in Mexico. Écoscience, 1–17. doi:10.1080/11956860.2021.1921935 https://doi.org/10.1080/11956860.2021.1921935

The increase in anthropogenic activities that lead to fragmentation and habitat loss, could result in a reduction of connectivity among habitat patches of terrestrial species. We used ecological niche models, circuit and graph theories to evaluate functional connectivity among home-range patches and…

Wieringa, J. G., Carstens, B. C., & Gibbs, H. L. (2021). Predicting migration routes for three species of migratory bats using species distribution models. PeerJ, 9, e11177. doi:10.7717/peerj.11177 https://doi.org/10.7717/peerj.11177

Understanding seasonal variation in the distribution and movement patterns of migratory species is essential to monitoring and conservation efforts. While there are many species of migratory bats in North America, little is known about their seasonal movements. In terms of conservation, this is impo…

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2021). Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 12(3). doi:10.1002/ecs2.3422 https://doi.org/10.1002/ecs2.3422

A key assumption in species distribution modeling (SDM) with presence‐background (PB) methods is that sampling of occurrence localities is unbiased and that any sampling bias is proportional to the background distribution of environmental covariates. This assumption is rarely met when SDM practition…

Martin, D., Aguado, M. T., Fernández Álamo, M.-A., Britayev, T. A., Böggemann, M., Capa, M., … Teixeira, M. A. L. (2021). On the Diversity of Phyllodocida (Annelida: Errantia), with a Focus on Glyceridae, Goniadidae, Nephtyidae, Polynoidae, Sphaerodoridae, Syllidae, and the Holoplanktonic Families. Diversity, 13(3), 131. doi:10.3390/d13030131 https://doi.org/10.3390/d13030131

Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although …

Calixto‐Rojas, M., Lira‐Noriega, A., Rubio‐Godoy, M., de León, G. P., & Pinacho‐Pinacho, C. D. (2021). Phylogenetic relationships and ecological niche conservatism in killifish (Profundulidae) in Mesoamerica. Journal of Fish Biology. doi:10.1111/jfb.14727 https://doi.org/10.1111/jfb.14727

The family Profundulidae is a group of small‐sized fish species distributed between southern Mexico and Honduras, where they are frequently the only fish representatives at higher elevations in the basins where they occur. We characterized their ecological niche using different methods and metrics d…

Cruz, J. A., Prado, J. L., & Arroyo-Cabrales, J. (2021). The mutual ecogeographical range and paleoclimatic reconstruction during the Late Pleistocene-Holocene in the Pampas (Argentina) using meso and microvertebrate fossils. The Holocene, 095968362199465. doi:10.1177/0959683621994652 https://doi.org/10.1177/0959683621994652

The Pampas of Argentina is a large grassland ecosystem located in the oriental region southern of South America. As a study case, we present the results of the paleoclimatic analysis of the Tixi Cave site. This is a paleontological and archeological locality that shows a long chronologic sequence, w…

Azevedo, J. A. R., Guedes, T. B., Nogueira, C. de C., Passos, P., Sawaya, R. J., Prudente, A. L. C., … Antonelli, A. (2019). Museums and cradles of diversity are geographically coincident for narrowly distributed Neotropical snakes. Ecography, 43(2), 328–339. doi:10.1111/ecog.04815 https://doi.org/10.1111/ecog.04815

Factors driving the spatial configuration of centres of endemism have long been a topic of broad interest and debate. Due to different eco‐evolutionary processes, these highly biodiverse areas may harbour different amounts of ancient and recently diverged organisms (paleo‐ and neo‐endemism, respecti…

Parker, S. D., Perkin, J. S., Bean, M. G., Lutz‐Carrillo, D., & Acre, M. R. (2021). Temporal distribution modelling reveals upstream habitat drying and downstream non‐native introgression are squeezing out an imperiled headwater fish. Diversity and Distributions. doi:10.1111/ddi.13214 https://doi.org/10.1111/ddi.13214

Aim: To review the conservation status of Headwater catfish Ictalurus lupus (Girard,1859) in the United States, including quantifying environmental correlates with range contraction and hybridization and introgression with Channel catfish Ictalurus punctatus (Rafinesque, 1818) to inform conservatio…

Andersen, D., Borzée, A., & Jang, Y. (2021). Predicting global climatic suitability for the four most invasive anuran species using ecological niche factor analysis. Global Ecology and Conservation, 25, e01433. doi:10.1016/j.gecco.2020.e01433 https://doi.org/10.1016/j.gecco.2020.e01433

Invasive species have a massive impact on their environment and predicting geographical zones at risk of invasion is paramount to the control of further invasions. Invasive anurans are particularly detrimental to native amphibian species, other vertebrates, and even aquaculture through competition, …