Science Rendue Possible
Tourinho, L., S. Manes, A. P. F. Pires, J. C. Nabout, J. A. F. Diniz-Filho, L. C. Terribile, M. F. de Siqueira, et al. 2025. Projected impacts of climate change on ecosystem services provided by terrestrial mammals in Brazil. Ecosystem Services 71: 101687. https://doi.org/10.1016/j.ecoser.2024.101687
Climate change poses a significant threat to biodiversity and ecosystem services (ES). In this study, we evaluated the climate change risk to 11 ES provided by Brazilian terrestrial mammals by mapping their potential distribution using ecological niche modeling. We assessed risk by estimating species richness (for each ES) and ES richness (for ES overlapped) under current and future conditions. Although most of the species are projected to experience distribution contractions, overall, the individual ES and their overlap are expected to be less at risk from climate change (i.e., gain in redundancy of providers or area of supply). The Amazon emerges as a hotspot for ES supply by mammals, showing the greatest redundancy and, in some cases, expansion of ES supply. Because ES are benefits to people, and the Amazon is the least populated region in Brazil, this surplus might not translate into actual service. Conversely, the densely populated Atlantic Forest, and the agriculturally productive southern of Cerrado, and Pantanal are expected to lose ES in the future. We emphasize the importance of identifying and mapping ES providers to inform decision-making and policy formulation and guide strategies to deal with climate change and other stressors such as land-use changes. Overall, there is an urgent need for conservation and restoration efforts, particularly in densely populated regions at risk of losing provider species and their ES, such as in the Atlantic Forest. Also, further research is crucial for the Caatinga and Pampa regions, where knowledge gaps were identified.
Sousa, R. L. M., F. G. de Carvalho, A. dos Santos Bragança Gil, T. B. Vieira, and T. S. Michelan. 2025. Temperature and precipitation influence the distribution of different Cyperaceae life forms: The role of protected areas in the Amazon for conservation. Biological Conservation 301: 110886. https://doi.org/10.1016/j.biocon.2024.110886
Climate change is the main cause of global biodiversity loss and changes in the structure of ecological communities. Species distribution models are an efficient tool for predicting suitable areas for species and their vulnerability to climate change. In this study, we evaluated the impact of precipitation and temperature (factors of climate change) on 12 species of the Cyperaceae family, classified into three groups: aquatic, amphibian, and terrestrial. Our results provide a comprehensive overview of habitat projections for aquatic, amphibian and terrestrial Cyperaceae species in the Amazon biome under current and future scenarios. We highlight significant range losses projected for species such as Scleria amazonica and Cyperus lacustris in the future. The relationship between climate and its influence on species distribution is critical, emphasizing the urgent need to conserve biodiversity in the face of climate change. In the models, protected areas were essential refuges for species under threat, highlighting their crucial role in preventing biodiversity loss. Variables such as temperature and seasonality (rainfall variability) strongly influenced the distribution patterns of Cyperaceae species. Seasonal fluctuations such as extreme droughts can influence water availability and the growth dynamics of hydrophytic plants. Amphibian species adapt to temperature fluctuations and changes in precipitation, while terrestrial plants prefer warmer and rainy regions. Our results emphasize the importance of conservation strategies for Amazonian species. We have also shown that protected areas play an essential role in conserving biodiversity and protecting Cyperaceae species from future changes.
Kessous, I. M., H. Farooq, W. Testo, M. F. T. Jiménez, B. Neves, A. R. Pinto, F. Salgueiro, et al. 2024. New insights into the classification, diversification, and evolutionary dynamics of bromeliads. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boae074
Abstract The Neotropics have been host to a myriad of geological and climatic events that have shaped the biodiversity present in the region. Bromeliaceae forms one of the most prominent components of the Neotropical flora, being considered the largest group nearly exclusive to the Americas, with almost 4000 species divided into eight subfamilies. Here, we utilize a new time-calibrated molecular phylogeny including 1268 bromeliad taxa and integrate habitat and morphological data to answer the following questions: (i) Are bromeliad subfamilies monophyletic, and did Neogene and Quaternary events in South America coincide with their divergence? (ii) Did naked seeds of berry-fruited species, epiphytic growth, and climatic factors increase bromeliad diversification? Our analysis reconstructed a new topology concerning some recently diverged lineages, with the genus Bromelia emerging as the sister group of a clade including all remaining Bromelioideae lineages + Puyoideae. Miocene events possibly triggered the diversification of bromeliads after a long period of stasis during the Palaeogene. We hypothesize that the morphological shift between Bromelia and Bromelioideae (except Bromelia) is related to the colonization of a new high-elevation environment by Puyoideae in the Andes. Additionally, our results show that naked seeds and the epiphytic growth form positively influence diversification rate, while precipitation, temperature, and elevation have a negative influence. We emphasize the importance of considering a variety of morphological and ecological features to enhance our understanding of bromeliad evolution.
Quirk, Z. J., S. Y. Smith, R. Paul Acosta, and C. J. Poulsen. 2024. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant‐based paleoclimatic reconstructions. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16426
AbstractPremiseThe ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture.MethodsWe tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models.ResultsDespite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals.ConclusionsBecause of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic‐based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Ackerman, J. D., W. Recart, L. Soifer, W. Falcón, and C. Baider. 2024. Invasions of the bamboo orchid: performance variability on islands oceans apart. Biological Invasions. https://doi.org/10.1007/s10530-024-03442-y
Traits associated with successful biological invasions across environmental gradients or geographical distances may vary depending on processes such as founder effects, ecological sorting, or adaptation to local conditions. Consequently, drivers of success are not necessarily consistent throughout the invasive range. We evaluate how plant traits, reproductive success and climatic preferences vary in populations of a naturalized orchid on islands in the Atlantic, Pacific and Indian oceans. Populations of Arundina graminifolia (bamboo orchid) were located on Puerto Rico, Hawaiian Islands (Hawai’i, O’ahu, Kaua’i), and Mauritius. Vegetative and reproductive traits were measured, and male and female success were assessed. Populations were compared using multivariate approaches. Species distribution modeling was used to assess potential climatic preferences within and among islands. Floral morphology differed among islands but considerable overlap in trait distributions exists. Reproductive success significantly differed among islands and was linked to floral traits, local pollinator pools and perhaps variable levels of florivory. Hawaiian populations occupied the broadest climatic niche space and Mauritius the most restricted. The effectiveness of using present points from the native range to reveal climatic suitability on invaded islands varied among islands. Successful invasions across a broad geographical range can occur even when morphology, reproductive success and climatic conditions are variable. As expected, some aspects of this global invasion are similar, but others differ among islands underscoring the context dependency of biological invasions and the difficulty of overall predictions. Los rasgos asociados a las invasiones biológicas exitosas a través de gradientes ambientales o distancias geográficas pueden variar dependiendo de procesos tales como el efecto fundador, el sorteo ecológico, o las adaptaciones a las condiciones locales. Consecuentemente, los impulsores del éxito no son necesariamente consistentes a través de la distribución invadida. Nosotros evaluamos cómo los rasgos, el éxito reproductivo y las preferencias climáticas varían en poblaciones de una orquídea naturalizada en islas de los océanos Atlántico, Pacífico e Índico. Las poblaciones de Arundina graminifolia (orquídea bambú) estaban localizadas en Puerto Rico, las Islas Hawaianas (Hawai’i, O’ahu, Kaua’i) y en la Isla de Mauricio. Los rasgos vegetativos y reproductivos fueron medidos, y el éxito reproductivo masculino y femenino fue evaluado. Comparamos las poblaciones usando enfoques estadísticos multivariados. También usamos modelos de distribución de especies para evaluar las preferencias climáticas tanto dentro de las islas, así como entre ellas. La morfología floral difirió entre islas, pero existe un sobrelapamiento considerable en la distribución de rasgos. El éxito reproductivo fue significativamente diferente entre islas, y estuvo ligado a los rasgos florales, el conjunto de polinizadores locales y, quizá, a niveles variables de florivoría. Las poblaciones hawaianas ocuparon el nicho climático más amplio mientras que las mauricianas ocuparon el más restringido. La efectividad de usar puntos de presencia de la distribución nativa para revelar la adecuación climática de las islas invadidas varió entre islas. Encontramos que las invasiones exitosas a través de una distribución geográfica amplia pueden ocurrir a pesar de la variabilidad en morfología, éxito reproductivo y condiciones climáticas. Como era de esperarse, algunos aspectos de esta invasión global son similares, pero otros difieren entre islas, haciendo hincapié en la dependencia del contexto de las invasiones biológicas y la dificultad de hacer predicciones generalizadas. Les traits associés aux invasions biologiques sur des gradients environnementaux ou des distances géographiques peuvent varier en fonction de processus tels que les effets fondateurs, le tri écologique ou l'adaptation aux conditions locales. Par conséquent, les facteurs de réussite ne sont pas nécessairement cohérents dans l'ensemble de l'aire de répartition de l'invasion. Nous évaluons comment les caractéristiques des plantes, le succès de la reproduction et les préférences climatiques varient dans les populations d'une orchidée naturalisée sur des îles des océans Atlantique, Pacifique et Indien. Les populations d'Arundina graminifolia (orchidée bambou) ont été localisées à Porto Rico, dans les îles hawaïennes (Hawai'i, O'ahu, Kaua'i) et à l'île Maurice. Les traits végétatifs et reproductifs ont été mesurés, et le succès reproductifs des mâles et des femelles a été évalué. Les populations ont été comparées à l'aide d'approches multivariées. La modélisation de la distribution des espèces a été utilisée pour évaluer les préférences climatiques potentielles au sein des îles et entre elles. La morphologie florale diffère d'une île à l'autre, mais il existe un chevauchement considérable dans la répartition des caractéristiques. Le succès de la reproduction diffère significativement entre les îles et est lié aux caractéristiques florales, aux réservoirs locaux de pollinisateurs et peut-être à des niveaux variables de florivorie. Les populations hawaïennes ont occupé la niche climatique la plus large et les populations mauriciennes la plus restreinte. L'efficacité de l'utilisation de points de présences dans l'aire de répartition indigène pour révéler l'adéquation climatique des îles envahies varie d'une île à l'autre. Des invasions réussies sur une vaste aire de répartition géographique peuvent se produire même lorsque la morphologie, le succès de la reproduction et les conditions climatiques sont variables. Comme prévu, certains aspects de cette invasion mondiale sont similaires, mais d'autres diffèrent d'une île à l'autre, ce qui souligne l’importance du contexte des invasions biologiques et la difficulté des prédictions globales.
Santos, R. S., J. B. R. Alencar, and R. Gallo. 2024. Modeling the current and projected distribution of Brazilian peppertree Schinus terebinthifolia Raddi (Anacardiaceae) in the Americas. Brazilian Journal of Biology 84. https://doi.org/10.1590/1519-6984.279769
Global biodiversity is under substantial threat due to biological invasions, a problem exacerbated by climate change. Such invasions have detrimental effects on the environment, economy, and human health, resulting in significant financial burdens. Recently, understanding these challenges has become a highlighted priority within the scientific community. This study focuses on the evaluation of Schinus terebinthifolia, native to South America, and its invasive spread into North and Central America, which has resulted in wide distribution and considerable impact. The primary objectives of this study include analyzing the potential distribution of the species under current and future climate scenarios, identifying the areas where its climatic niche is changing. Data collection encompassed a vast dataset of over 30,000 occurrence records of this species, from the following databases: (1) The Global Biodiversity Information Facility provided 22,163 records (GBIF), (2) The virtual Herbarium Reflora contributed 1,438 records, and NeoTropTree made available 6,591 records. Following a rigorous filtering process, 992 occurrences were considered for modeling. In this process, we utilized climate data and climate projections, employing various algorithms, with an emphasis on the consensus model methodology. The research results reveal a clear trend of reduced habitat suitability for S. terebinthifolia, especially under scenarios of high global warming. This accentuates the urgency of implementing emission control measures and mitigation strategies. Additionally, the study underscores the crucial importance of continuous monitoring, as well as actions for controlling and restoring affected ecosystems. The significant role played by S. terebinthifolia in both its native and invaded areas highlights the need for comprehensive management approaches. In the face of climate change and biodiversity threats, this study provides insightful observations on the dynamics of biological invasions. Success in addressing these issues relies on close cooperation between the scientific community, policymakers, land managers, and local communities. This collaboration is essential for guiding and conducting conservation and biodiversity management efforts in an ever-evolving world.
da Silva, A. S. S., X. Arnan, and P. M. de Medeiros. 2024. Climate change may alter the availability of wild food plants in the Brazilian semiarid. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02250-3
Wild food plants (WFPs) are important components of the diet and a source of income for local communities in semiarid regions, given that these populations are commonly characterized by high socioeconomic vulnerability and dependence on natural resources for subsistence. In periods of food scarcity and crop failure, WFPs emerge as strategic resources for ensuring food and nutrition security. However, these little-researched plants may also be affected by climate change. Here, our objective was to determine the spatiotemporal dynamics of WFPs in the Brazilian semiarid and evaluate their potential availability in future climate change scenarios. We constructed habitat suitability models for economically and nutritionally important WFPs used in this region and projected future scenarios (2041–2060). Furthermore, we determined the geographical distribution, species richness, and composition (on local and regional scales) of WFPs in current and future scenarios. Our results showed that WFPs exhibited varied responses to climate change. The more pessimistic the future scenario, the greater the negative effects. Most WFP species exhibited a reduction in climatically suitable areas in future scenarios, resulting in a shrinkage of geographical ranges, a reduction in species richness, and alterations in community composition. These changes could have important implications for economic development, subsistence, and food and nutrition security in the region. Our findings offer insights that can guide actions for adaptation and mitigating the effects of climate change and promoting species conservation not only in the Brazilian semiarid but also in other semiarid regions worldwide.
Dantas, V. L., L. C. S. Oliveira, C. R. Marcati, and J. Sonsin‐Oliveira. 2024. Coordination of bark and wood traits underlies forest‐to‐savanna evolutionary transitions. Journal of Biogeography. https://doi.org/10.1111/jbi.14850
Aim To test the hypothesis that adaptive shifts leading to the assembly of tropical savannas involved coordination between bark and wood traits and to understand the underlying mechanisms.LocationTropical South America.TaxonAngiosperms (woody).MethodsWe compiled data on three bark traits (total, inner and outer relative bark thickness), wood density, maximum height, five secondary xylem traits and on species' habitat information (light environment, climate, soil and fire history) for Neotropical savanna, forest and generalist species (biome groups). We tested for pairwise and multivariate associations among traits across species and if biome group and habitat conditions explained species positions along the resulting strategy axes.ResultsTraits covaried along four different axes. The first axis was consistent with a trade‐off between fire (thick barks) and shade tolerance (low bark to diameter ratio, high vessel density) and contributed to differentiate the three biome groups according to the preference for shaded environments. Forest species also differed from savanna and generalist species in a separate axis by being more resource acquisitive. Maximum height and wood density did not strongly trade‐off with bark thickness, although maximum height was negatively covaried with relative outer bark thickness. Preference for shaded conditions was the main driver of variation in the two principal strategy axes, but temperature, fire and soil sand content also explained differences in plant stature between savanna and generalist species.Main ConclusionsAllocation to bark is constrained by trade‐offs with wood, opposing shade‐tolerant and acquisitive forest species to fire‐resistant and conservative savanna species. Rather than a single strategy axis, three axes are necessary to understand the functional differences among savanna, forest and generalist species. Because two of these axes are controlled by light availability, the associated traits tend to covary in space and time, but not across species.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.