Science Rendue Possible

Lizardo, V., F. Escobar, E. Martínez‐Meyer, and J. J. Morrone. 2024. Adaptive shifts in Phanaeini dung beetles of the Mexican plateau cenocron in the Mexican transition zone. Zoologica Scripta.

The Mexican Transition Zone is a biogeographically complex area where old and new lineages of Neotropical and Nearctic affinities overlap. Its biota was assembled by successive dispersal events of cenocrons, which are sets of taxa that dispersed during a given time interval from both North and South America and then diversified in the area. The Mexican Plateau cenocron, with Neotropical affinities, is found in temperate and dry climates in the Nearctic region. We hypothesised that it underwent an adaptive shift in environmental niche. We tested this hypothesis using a phylogenetic comparative framework, measuring phylogenetic signal and fitting to single optima macroevolutionary models, and an Ornstein‐Uhlenbeck macroevolutionary model with multiple optima. We used phylogenetic and distributional information of the tribe Phanaeini to assess whether there exists a distinction in conservatism between the earliest (Mexican Plateau) and most recent (Typical Neotropical) cenocrons within the Mexican Transition Zone (MTZ) as this tribe stands as a classic example of the dispersal and diversification patterns of cenocrons originating in the Neotropics. We identified different shifts in environmental requirements that match the niche description of the Mexican Plateau cenocron, suggesting that it was established through multiple adaptive shifts in the Mexican Transition Zone.

Sánchez‐Campaña, C., C. Múrria, V. Hermoso, D. Sánchez‐Fernández, J. M. Tierno de Figueroa, M. González, A. Millán, et al. 2023. Anticipating where are unknown aquatic insects in Europe to improve biodiversity conservation. Diversity and Distributions.

Aim Understanding biodiversity patterns is crucial for prioritizing future conservation efforts and reducing the current rates of biodiversity loss. However, a large proportion of species remain undescribed (i.e. unknown biodiversity), hindering our ability to conduct this task. This phenomenon, known as the ‘Linnean shortfall’, is especially relevant in highly diverse, yet endangered, taxonomic groups, such as insects. Here we explore the distributions of recently described freshwater insect species in Europe to (1) infer the potential location of unknown biodiversity hotspots and (2) determine the variables that can anticipate the distribution of unknown biodiversity. Location The European continent, including western Russia, Cyprus and Turkey. Methods Georeferenced information of all sites where new aquatic insect species were described across Europe from 2000 to 2020 was compiled. In order to understand the observed spatial patterns in richness of recently described species, spatial units were defined (level 6 of HydroBASINS) and associated with a combination of a set of socioeconomic, environmental and sampling effort descriptors. A zero-inflated Poisson regression approach was used to model the richness of newly described species within each spatial unit. Results Nine hundred and sixty-six recently described species were found: 398 Diptera, 362 Trichoptera, 105 Coleoptera, 66 Plecoptera, 28 Ephemeroptera, 3 Neuroptera, 2 Lepidoptera and 2 Odonata. The Mediterranean Basin was the region with the highest number of recently described species (74%). The richness of recently described species per spatial unit across Europe was highest at mid-elevation areas (between 400 and 1000 m), latitudes between 40 and 50° and in areas with yearly average precipitation levels of 500–1000 mm, a medium intensity of sampling effort and low population density. The percentage of protected areas in each study unit was not significantly related to the richness of recently described species. In fact, 70% of the species were found outside protected areas. Main conclusions The results highlight the urgent need to concentrate conservation efforts in freshwater ecosystems located at mid-altitude areas and out of protected areas across the Mediterranean Basin. The highest number of newly described species in those areas indicates that further monitoring efforts are required to ensure the aquatic biodiversity is adequately known and managed within a context of growing human impacts in freshwater ecosystems.

Alton, L. A., and V. Kellermann. 2023. Interspecific interactions alter the metabolic costs of climate warming. Nature Climate Change.

Climate warming is expected to increase the energy demands of ectotherms by accelerating their metabolic rates exponentially. However, this prediction ignores environmental complexity such as species interactions. Here, to better understand the metabolic costs of climate change for ectotherms, we reared three Drosophila species in either single-species or two-species cultures at different temperatures and projected adult metabolic responses under an intermediate climate-warming scenario across the global range of Drosophila . We determined that developmental acclimation to warmer temperatures can reduce the energetic cost of climate warming from 39% to ~16% on average by reducing the thermal sensitivity of metabolic rates. However, interspecific interactions among larvae can erode this benefit of developmental thermal acclimation by increasing the activity of adults that develop at warmer temperatures. Thus, by ignoring species interactions we risk underestimating the metabolic costs of warming by 3–16% on average. The authors show in Drosophila species that while developmental acclimation can reduce metabolic costs associated with warming, interspecific interactions can erode this benefit. This suggests that ignoring species interactions may lead to underestimation of metabolic costs under future climates.

LIZARDO, V., V. MOCTEZUMA, and F. ESCOBAR. 2022. Distribution, Regionalization, and Diversity of the dung beetle genus Phanaeus MacLeay (Coleoptera: Scarabaeidae) using Species Distribution Models. Zootaxa 5213: 546–568.

The genus Phanaeus is a well-known group whose taxonomy has been described multiple times. Its distribution was previously classified into 11 ecogeographic groups that are equivalent to areas of endemism. Here we use Species Distribution Models to describe species richness patterns. We measured beta-diversity and regionalized its distribution into one region and one transition zone, both with three dominions: Mexican Transition Zone (North American, Mexican, and Mesoamerican dominions) and Neotropical region (Pacific, Brazilian, and Atlantic Forest dominions). We also present a species checklist and updated the distribution maps for 73 of 81 species described so far that reflects all the taxonomical updates. We include a list of all the recorded locations (by country, state, and province), list the recorded habitats and biomes, and describe the modelled environmental conditions for each species.

Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538.

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.

Sweet, F. S. T., B. Apfelbeck, M. Hanusch, C. Garland Monteagudo, and W. W. Weisser. 2022. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. Journal of Urban Ecology 8.

Cities have been shown to be biodiverse, but it is unclear what fraction of a regional species pool can live within city borders and how this differs between taxa. Among animals, most research has focused on a few well-studied taxa, such as birds or butterflies. For other species, progress is limite…

Ramírez, F., V. Sbragaglia, K. Soacha, M. Coll, and J. Piera. 2022. Challenges for Marine Ecological Assessments: Completeness of Findable, Accessible, Interoperable, and Reusable Biodiversity Data in European Seas. Frontiers in Marine Science 8.

The ongoing contemporary biodiversity crisis may result in much of ocean’s biodiversity to be lost or deeply modified without even being known. As the climate and anthropogenic-related impacts on marine systems accelerate, biodiversity knowledge integration is urgently required to evaluate and monit…

Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science.

Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32.

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …

Moore, M. P., K. Hersch, C. Sricharoen, S. Lee, C. Reice, P. Rice, S. Kronick, et al. 2021. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proceedings of the National Academy of Sciences 118.

Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic condi…