Science Rendue Possible

Baltensperger, A. P., H. C. Lanier, and L. E. Olson. 2024. Extralimital terrestrials: A reassessment of range limits in Alaska’s land mammals J. R. Michaux [ed.],. PLOS ONE 19: e0294376. https://doi.org/10.1371/journal.pone.0294376

Understanding and mitigating the effects of anthropogenic climate change on species distributions requires the ability to track range shifts over time. This is particularly true for species occupying high-latitude regions, which are experiencing more extreme climate change than the rest of the world. In North America, the geographic ranges of many mammals reach their northernmost extent in Alaska, positioning this region at the leading edge of climate-induced distribution change. Over a decade has elapsed since the publication of the last spatial assessments of terrestrial mammals in the state. We compared public occurrence records against commonly referenced range maps to evaluate potential extralimital records and develop repeatable baseline range maps. We compared occurrence records from the Global Biodiversity Information Facility for 61 terrestrial mammal species native to mainland Alaska against a variety of range estimates (International Union for Conservation of Nature, Alaska Gap Analysis Project, and the published literature). We mapped extralimital records and calculated proportions of occurrences encompassed by range extents, measured mean direction and distance to prior range margins, evaluated predictive accuracy of published species models, and highlighted observations on federal lands in Alaska. Range comparisons identified 6,848 extralimital records for 39 of 61 (63.9%) terrestrial mainland Alaskan species. On average, 95.5% of Alaska Gap Analysis Project occurrence records and ranges were deemed accurate (i.e., > 90.0% correct) for 31 of 37 species, but overestimated extents for 13 species. The International Union for Conservation of Nature range maps encompassed 68.1% of occurrence records and were > 90% accurate for 17 of 39 species. Extralimital records represent either improved sampling and digitization or actual geographic range expansions. Here we provide new data-driven range maps, update standards for the archiving of museum-quality locational records and offer recommendations for mapping range changes for monitoring and conservation.

Tang, T., Y. Zhu, Y.-Y. Zhang, J.-J. Chen, J.-B. Tian, Q. Xu, B.-G. Jiang, et al. 2024. The global distribution and the risk prediction of relapsing fever group Borrelia: a data review with modelling analysis. The Lancet Microbe. https://doi.org/10.1016/s2666-5247(23)00396-8

Background The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB.MethodsWe searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level.FindingsWe retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species.InterpretationThe predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions.FundingNational Key Research and Development Program of China.

DuBose, T. P., V. Catalan, C. E. Moore, V. R. Farallo, A. L. Benson, J. L. Dade, W. A. Hopkins, and M. C. Mims. 2024. Thermal Traits of Anurans Database for the Southeastern United States (TRAD): A Database of Thermal Trait Values for 40 Anuran Species. Ichthyology & Herpetology 112. https://doi.org/10.1643/h2022102

Thermal traits, or how an animal responds to changing temperatures, impacts species persistence and thus biodiversity. Trait databases, as repositories of consolidated, measured organismal attributes, allow researchers to link study species with specific trait values, enabling comparisons within and among species. Trait databases also help lay the groundwork to build mechanistic linkages between organisms and the environment. However, missing or hidden physiological trait data preclude building mechanistic estimates of climate change vulnerability for many species. Thus, physiologically focused trait databases present an opportunity to consolidate data and enable species-specific or multispecies, mechanistic evaluations of climate change vulnerability. Here, we present TRAD: thermal traits of anurans database for the southeastern United States, a database of thermal trait values related to physiological thermoregulation (critical thermal minima and maxima, preferred temperature), behavioral thermoregulation (activity period, retreat emergence temperature, basking temperature, minimum and maximum foraging temperatures), and body mass for 37 anuran species found within the southeastern United States. In total, TRAD contains 858 reported trait values for 37 of 40 species found in the region from 267 peer-reviewed papers, dissertations, or theses and is easily linked with trait data available in ATraiU, an ecological trait database for anurans in the United States. TRAD contains trait values for multiple life stages and a summarization of interspecific adult trait values. Availability of trait data varied widely among traits and species. Estimates of mass were the most common trait values reported, with values available for 32 species. Behavioral trait values comprised 23% of our database, with activity period available for 34 species. We found the most trait values for Cope's Gray Treefrog (Dryophytes chrysoscelis), with at least one trait value for eight traits in the database. Conversely, species in the genus Pseudacris generally had the fewest trait values available. Species with the largest geographic range sizes also had the greatest coverage of data across traits (rho 5 0.75, P , 0.001). TRAD can aid studies of anuran response to changing temperatures, physiological niche space and limitations, and potential drivers of anuran geographic range limits, influencing our understanding of other ecological and evolutionary patterns and processes and enabling multispecies comparisons of potential risk and resilience in the face of climate change.

Cruz, J. A., J. A. Velasco, J. Arroyo-Cabrales, and E. Johnson. 2023. Paleoclimatic Reconstruction Based on the Late Pleistocene San Josecito Cave Stratum 720 Fauna Using Fossil Mammals, Reptiles, and Birds. Diversity 15: 881. https://doi.org/10.3390/d15070881

Advances in technology have equipped paleobiologists with new analytical tools to assess the fossil record. The functional traits of vertebrates have been used to infer paleoenvironmental conditions. In Quaternary deposits, birds are the second-most-studied group after mammals. They are considered a poor paleoambiental proxy because their high vagility and phenotypic plasticity allow them to respond more effectively to climate change. Investigating multiple groups is important, but it is not often attempted. Biogeographical and climatic niche information concerning small mammals, reptiles, and birds have been used to infer the paleoclimatic conditions present during the Late Pleistocene at San Josecito Cave (~28,000 14C years BP), Mexico. Warmer and dryer conditions are inferred with respect to the present. The use of all of the groups of small vertebrates is recommended because they represent an assemblage of species that have gone through a series of environmental filters in the past. Individually, different vertebrate groups provide different paleoclimatic information. Birds are a good proxy for inferring paleoprecipitation but not paleotemperature. Together, reptiles and small mammals are a good proxy for inferring paleoprecipitation and paleotemperature, but reptiles alone are a bad proxy, and mammals alone are a good proxy for inferring paleotemperature and precipitation. The current paleoclimatic results coupled with those of a previous vegetation structure analysis indicate the presence of non-analog paleoenvironmental conditions during the Late Pleistocene in the San Josecito Cave area. This situation would explain the presence of a disharmonious fauna and the extinction of several taxa when these conditions later disappeared and do not reappear again.

Widmer, B. W., T. M. Gehring, B. W. Heumann, and K. E. Nicholson. 2022. Climate change and range restriction of common salamanders in eastern Canada and the United States. The Journal of Wildlife Management 86. https://doi.org/10.1002/jwmg.22235

The sensitivity of amphibian species to shifts in environmental conditions has been exhibited through long‐term population studies and the projection of ecological niche models under expected conditions. Species in biodiversity hotspots have been the focus of ample predictive modeling studies, while, despite their significant ecological value, wide‐ranging and common taxa have received less attention. We focused on predicting range restriction of the spotted salamander (Ambystoma maculatum), blue‐spotted salamander (A. laterale), four‐toed salamander (Hemidactylium scutatum), and red‐backed salamander (Plethodon cinereus) under future climate scenarios. Using bias‐corrected future climate data and biodiversity database records, we developed maximum entropy (MaxEnt) models under current conditions and for climate change projections in 2050 and 2070. We calculated positivity rates of species localities to represent proportions of habitat expected to remain climatically suitable with continued climate change. Models projected under future conditions predicted average positivity rates of 91% (89–93%) for the blue‐spotted salamander, 23% (2–41%) for the spotted salamander, 4% (0.7–9%) for the four‐toed salamander, and 61% (42–76%) for the red‐backed salamander. Range restriction increased with time and greenhouse gas concentration for the spotted salamander, four‐toed salamander, and red‐backed salamander. Common, widespread taxa that often receive less conservation resources than other species are at risk of experiencing significant losses to their climatic ranges as climate change continues. Efforts to maintain populations of species should be focused on regions expected to experience fewer climatic shifts such as the interior and northern zones of species' distributions.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Allstädt, F. J., A. Koutsodendris, E. Appel, W. Rösler, T. Reichgelt, S. Kaboth-Bahr, A. A. Prokopenko, and J. Pross. 2021. Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments 101: 177–195. https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…