Science Rendue Possible
Quirk, Z. J., S. Y. Smith, R. Paul Acosta, and C. J. Poulsen. 2024. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant‐based paleoclimatic reconstructions. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16426
AbstractPremiseThe ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture.MethodsWe tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models.ResultsDespite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals.ConclusionsBecause of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic‐based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Ferreira, G. E., J. L. Clark, L. Clavijo, A. Zuluaga, A. Chautems, M. J. G. Hopkins, A. O. Araujo, and M. Perret. 2024. Phylogenetics, character evolution, and historical biogeography of the Neotropical genus Besleria (Gesneriaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boae007
Besleria, a genus of perennial herbs, shrubs, or small trees growing in the understorey of rainforests, is one of the largest genera of neotropical Gesneriaceae, with over 165 species. Despite the ecological importance and ubiquity of Besleria in rainforest ecosystems, taxonomic and evolutionary studies of Besleria are limited. Here, we generated a phylogenetic analysis of Besleria using four nuclear and chloroplast DNA regions (ITS, matK, rps16, and trnL-trnF) covering more than 50% of the recognized species, along with two secondary calibration points to infer divergence times. Our results support the monophyly of Besleria and allowed us to revise the infrageneric classification and biogeographical history of the genus. We identified five major clades that do not correspond to sections or subsections in previous classifications. These clades are well circumscribed geographically but remain difficult to characterize using previously hypothesized morphological characters. Biogeographical reconstructions indicate an origin in the northern Andes during the Middle Miocene (ca. 15 Mya). The current distribution patterns of this plant group have been significantly shaped by geological and climatic events, particularly Andean uplift and the formation of the Panama Isthmus.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.
Karimi, N., and M. M. Hanes. 2024. Patterns of Grewia (Malvaceae) diversity across geographic scales in Africa and Madagascar. Annals of Botany. https://doi.org/10.1093/aob/mcae009
Background and aims Quantifying spatial species richness is useful to describe biodiversity patterns across broad geographic areas, especially in large, poorly known plant groups. We explore patterns and predictors of species richness across Africa in one such group; the paleotropical genus Grewia L. (Malvaceae). Methods Grewia species richness was quantified by extracting herbarium records from GBIF and Tropicos and creating geographic grids at varying spatial scales. We assessed predictors of species richness using spatial regression models with 30 environmental variables. We explored species co-occurrence in Madagascar at finer resolutions using Schoener's index, and compared species’ range sizes and IUCN status among ecoregions. Lastly, we derived a trait matrix for a subset of species found in Madagascar to characterize morphological diversity across space. Key Results Grewia species occur in 50 countries in Africa, with the highest number of species in Madagascar (93, with 80 species endemic). Species richness is highest in Madagascar, with up to 23 Grewia species in a grid cell, followed by coastal Tanzania/Kenya (up to 13 species), and northern South Africa and central Angola (11 species each). Across Africa, higher species richness was predicted by variables related to aridity. In Madagascar, a greater range in environmental variables best predicted species richness, consistent with geographic grid cells of highest species richness occurring near biome/ecoregion transitions. In Madagascar we also observe increasing dissimilarity in species composition with increasing geographic distance. Conclusions The spatial patterns and underlying environmental predictors that we uncover in Grewia represent an important step in our understanding of plant distribution and diversity patterns across Africa. Madagascar boasts nearly twice the Grewia species richness, compared to the second most species-rich country in Africa, which might be explained by complex topography and environmental conditions across small spatial scales.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Richard-Bollans, A., C. Aitken, A. Antonelli, C. Bitencourt, D. Goyder, E. Lucas, I. Ondo, et al. 2023. Machine learning enhances prediction of plants as potential sources of antimalarials. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1173328
Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families – Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) – and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms – Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks – and compare these to two ethnobotanical selection approaches – based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best – attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.
Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261
Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.