Science Rendue Possible
Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100
BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.
Pandolfi, A., and K. Schnepp. 2024. New distributional records of the genus Tetragonoderus Dejean, 1829 from the United States of America, including an updated key to species (Coleoptera: Carabidae). Fragmenta entomologica: Vol. 56 No. 1 (2024). https://doi.org/10.13133/2284-4880/1573
New distributional records are presented for the genus Tetragonoderus Dejean, 1829 from the United States of America. Tetragonoderus fasciatus (Haldeman, 1843) is a new state record for South Dakota, Tetragonoderus intersectus (Germar, 1824) is a new state record for Oklahoma, Tetragonoderus latipennis LeConte, 1874 is a new state record for Florida, Georgia, and Okhlaoma, and Tetragonoderus pallidus Horn, 1869 is a new state record for New Mexico and Utah. New county records for the introduced species Tetragonoderus laevigatus Chaudoir, 1876 in Florida and new state records for Georgia, Louisiana, and Mississippi signify a range extension. A new record of this species from Miami-Dade County from 2004 temporally precedes the known date of introduction. New observational records from citizen science platforms for the reported species are also noted. An updated key and distributional maps to the known species in the USA are also provided.,Fragmenta entomologica, Vol. 56 No. 1 (2024)
Araya‐Donoso, R., A. Biddy, A. Munguía‐Vega, A. Lira‐Noriega, and G. A. Dolby. 2024. Habitat quality or quantity? Niche marginality across 21 plants and animals suggests differential responses between highland and lowland species to past climatic changes. Ecography. https://doi.org/10.1111/ecog.07391
Climatic changes can affect species distributions, population abundance, and evolution. Such organismal responses could be determined by the amount and quality of available habitats, which can vary independently. In this study, we assessed changes in habitat quantity and quality independently to generate explicit predictions of the species' responses to climatic changes between Last Glacial Maximum (LGM) and present day. We built ecological niche models for genetic groups within 21 reptile, mammal, and plant taxa from the Baja California peninsula inhabiting lowland or highland environments. Significant niche divergence was detected for all clades within species, along with significant differences in the niche breadth and area of distribution between northern and southern clades. We quantified habitat quantity from the distribution models, and most clades showed a reduction in distribution area towards LGM. Further, niche marginality (used as a measure of habitat quality) was higher during LGM for most clades, except for northern highland species. Our results suggest that changes in habitat quantity and quality can affect organismal responses independently. This allows the prediction of genomic signatures associated with changes in effective population size and selection pressure that could be explicitly tested from our models.
McCoshum, S. M., and A. A. Agrawal. 2021. Ecology of Asclepias brachystephana: a plant for roadside and right-of-way management. Native Plants Journal 22: 256–267. https://doi.org/10.3368/npj.22.3.256
Declining insect abundance is occurring around the world, and some management projects are aiming to utilize roadsides and other right-of-ways as insect conservation areas. In the US, the decline of the monarch butterfly (Danaus plexippus Linnaeus [Nymphalidae]) populations has led to multiple studies focusing on a small number of milkweed species (Asclepias [Apocynaceae]) that occur in the major flyways. Here we survey a poorly studied milkweed, bract milkweed (A. brachystephana Engelm. ex Torr.), to document where it grows, which organisms make use of the plants, seed production, and concentrations of milkweed toxins (cardenolides) and to investigate if this species is suitable for roadside or right-of-ways management projects. Our results show that the range of A. brachystephana includes the Chihuahuan Desert and neighboring ecoregions. Plant populations were also observed occurring on roadsides and right-of-ways, rarely spreading into neighboring habitats. We document a variety of native pollinators utilizing floral resources and a few herbivores feeding on plant tissue. Chemical analyses show wild plants produce higher concentrations of toxic cardenolide than many other milkweed species. These data suggest A. brachystephana should be considered for roadside and right-of-way plantings, restoration projects, or seeding throughout the Chihuahuan Desert and adjoining ecoregions.
Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100
Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.
Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677
Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.
Führding‐Potschkat, P., H. Kreft, and S. M. Ickert‐Bond. 2022. Influence of different data cleaning solutions of point‐occurrence records on downstream macroecological diversity models. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9168
Digital point‐occurrence records from the Global Biodiversity Information Facility (GBIF) and other data providers enable a wide range of research in macroecology and biogeography. However, data errors may hamper immediate use. Manual data cleaning is time‐consuming and often unfeasible, given that the databases may contain thousands or millions of records. Automated data cleaning pipelines are therefore of high importance. Taking North American Ephedra as a model, we examined how different data cleaning pipelines (using, e.g., the GBIF web application, and four different R packages) affect downstream species distribution models (SDMs). We also assessed how data differed from expert data. From 13,889 North American Ephedra observations in GBIF, the pipelines removed 31.7% to 62.7% false positives, invalid coordinates, and duplicates, leading to datasets between 9484 (GBIF application) and 5196 records (manual‐guided filtering). The expert data consisted of 704 records, comparable to data from field studies. Although differences in the absolute numbers of records were relatively large, species richness models based on stacked SDMs (S‐SDM) from pipeline and expert data were strongly correlated (mean Pearson's r across the pipelines: .9986, vs. the expert data: .9173). Our results suggest that all R package‐based pipelines reliably identified invalid coordinates. In contrast, the GBIF‐filtered data still contained both spatial and taxonomic errors. Major drawbacks emerge from the fact that no pipeline fully discovered misidentified specimens without the assistance of taxonomic expert knowledge. We conclude that application‐filtered GBIF data will still need additional review to achieve higher spatial data quality. Achieving high‐quality taxonomic data will require extra effort, probably by thoroughly analyzing the data for misidentified taxa, supported by experts.
Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292
Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…
Schneider, K., D. Makowski, and W. van der Werf. 2021. Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters 16: 114026. https://doi.org/10.1088/1748-9326/ac2f19
Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, val…